曲線鋼箱梁橋的頂推(拖拉)監(jiān)控研究
[Abstract]:With the continuous development of bridge construction technology, bridge construction technology is constantly updated. Compared with other construction methods, the construction equipment needs less, is advantageous to the production organization, and can shorten the construction period. Based on these advantages, more and more construction methods are used in bridge erection. However, in the construction process of the jacking method, the system transformation of the whole bridge is frequent. With the continuous change of the coordinate displacement and stress state of the structure during the construction process the structural force is more complicated than other construction methods. The main work of this paper is as follows: (1) the origin of the thrusting method and the construction of the jacking method are briefly introduced, and the methods and principles of the thrusting are summarized. The establishment of monitoring system for jacking construction is explained in detail. (2) the 3D simulation model of steel box girder jacking construction is established one by using the large-scale universal finite element software ANSYS, and the relevant model parameters are determined according to the basic engineering data. Select reasonable units. The parameters to be controlled in the construction process are determined by simulating the jacking construction under different working conditions. (3) when the guide beam is in the state of maximum cantilever from the maximum cantilever state to the crossing of the main road of success in the process of pushing (towing), The guide beam is transformed from the maximum negative moment state to the maximum positive moment state, and the local instability occurs in the upper and lower flange plates of the guide beam of I-beam. The finite-element model of the guide beam is established, and the optimization suggestions for the section form of the guide beam are put forward. A local stiffening rib is set up for the I-beam guide beam up and down, and the top pair is arranged in the key part of the guide beam. The theoretical analysis and calculation structure and the field measurement verify each other. The safety operation of the guide beam structure is ensured. (4) the displacement and strain in the actual jacking construction are measured. The model parameters are adjusted in real time to guide the next construction condition. (5) the support reaction force of each support slider is constantly changing in the process of pushing (dragging). And it is possible to have the reality of three-point support. Through the simulation analysis of the finite-element model of the bottom plate and the web region, it is concluded that the local stress of the interface area between the bottom plate and the web through the sliding block is very large and the local instability is likely to occur. It is suggested that longitudinal and lateral local stiffeners should be added to the region, and sensors are arranged in the modified area. The measured data of the stress sensors during the push-pull process should prove the correctness of the local fine finite element simulation results. The suggestion of adding local stiffener ensures the safety of the steel box girder bottom plate when it passes through the slider, and avoids the occurrence of the local instability damage accident of the steel box girder. It is an important technical guarantee measure for the steel box girder to smoothly realize the pushing (towing). (6) the whole process of pushing (towing) not only detects the total displacement of the steel box girder, but also monitors the safety of the auxiliary structure, including the report supporting pier, in the whole process. The results of finite element calculation are compared with the measured results of construction, and the reasons are analyzed immediately once a large deviation occurs, thus ensuring the safety of the whole bridge jacking and pushing construction. The research method and conclusion of this paper can provide reference for the similar bridge construction.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:U445.4
【相似文獻】
相關(guān)期刊論文 前10條
1 舒曉文,祁軍強;伊萊·福爾肯大橋的頂推設(shè)計與施工[J];國外公路;2001年02期
2 徐化軒;頂推梁橋施工中可能出現(xiàn)的技術(shù)問題及對策[J];鐵道工程學(xué)報;2002年02期
3 徐華軒;;頂推梁橋施工中可能出現(xiàn)的技術(shù)問題及對策[J];OVM通訊;2002年06期
4 趙如東;連續(xù)梁頂推技術(shù)的新發(fā)展[J];水運工程;2004年03期
5 劉大洋;;頂推法施工工藝的探討[J];四川建材;2007年03期
6 陳繼光;;頂推法施工關(guān)鍵工藝改進[J];筑路機械與施工機械化;2008年03期
7 何杰;于雪梅;;多點頂推在鋼筋混凝土連續(xù)箱梁中的具體應(yīng)用[J];中國建設(shè)信息;2008年08期
8 曹航;;采用頂推法施工的西德維納大橋[J];黑龍江交通科技;2011年09期
9 閔祥濤;劉濤;;橋梁頂推法施工工藝控制分析[J];現(xiàn)代商貿(mào)工業(yè);2011年23期
10 張連海;;頂推法施工橋梁[J];北方交通;2012年07期
相關(guān)會議論文 前3條
1 石毅生;;錢塘江第二大橋鐵路引橋預(yù)應(yīng)力鋼筋混凝土梁新穎單點頂推法[A];中國土木工程學(xué)會橋梁及結(jié)構(gòu)工程學(xué)會第九屆年會論文集[C];1990年
2 金偉;彭錦;;預(yù)應(yīng)力混凝土橋梁頂推法施工技術(shù)的理論與實踐[A];2014年4月建筑科技與管理學(xué)術(shù)交流會論文集[C];2014年
3 馬春生;李江山;郭范圍;彭向榮;;廣東省九江大橋設(shè)計[A];'95預(yù)應(yīng)力混凝土連續(xù)梁和剛構(gòu)橋?qū)W術(shù)會議論文集[C];1995年
相關(guān)重要報紙文章 前2條
1 劉三琴;一橋飛架 天塹變通途[N];南方日報;2006年
2 本報記者 沈剛 李瑾 本報特約通訊員 彭倫理 劉健 唐博學(xué);工人設(shè)計師王海[N];工人日報;2004年
相關(guān)博士學(xué)位論文 前1條
1 牛輝;空間拱肋組合橋梁頂推施工技術(shù)研究[D];浙江大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 劉承啟;三拱肋下承式鋼拱橋頂推施工關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2015年
2 姚永鶴;大跨徑預(yù)應(yīng)力混凝土連續(xù)梁橋無跨中臨時墩頂推施工技術(shù)研究[D];浙江工業(yè)大學(xué);2014年
3 楊興華;頂推法施工自錨式懸索橋關(guān)鍵技術(shù)與控制[D];沈陽建筑大學(xué);2015年
4 沈國偉;曲線鋼箱梁橋的頂推(拖拉)監(jiān)控研究[D];蘭州交通大學(xué);2015年
5 李洪明;跨鐵路鋼箱梁橋頂推法施工關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2013年
6 楊輝;鋼箱梁步履式平移頂推受力特性與施工技術(shù)[D];南昌大學(xué);2010年
7 楊磊;混凝土斜連續(xù)梁頂推施工期風(fēng)險評估與預(yù)防措施[D];長沙理工大學(xué);2012年
8 徐甜;大跨度鋼箱梁頂推受力特性及監(jiān)測控制研究[D];長沙理工大學(xué);2011年
9 龍煈;長沙市福元路湘江大橋提籃式拱橋拼裝與頂推的控制技術(shù)[D];長沙理工大學(xué);2012年
10 王鶴;下塢薊運河特大橋7跨連續(xù)梁頂推施工技術(shù)研究[D];中南大學(xué);2012年
,本文編號:2359154
本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2359154.html