中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

曲線鋼箱梁橋的頂推(拖拉)監(jiān)控研究

發(fā)布時(shí)間:2018-11-26 17:16
【摘要】:隨著橋梁施工技術(shù)的不斷發(fā)展,橋梁施工工藝也在不斷的更新。頂推法施工對(duì)橋位處的交通不會(huì)產(chǎn)生太大的影響;和其他施工方式相比需要的施工設(shè)備相對(duì)而言少;有利于生產(chǎn)組織,可以縮短施工工期;谶@些優(yōu)點(diǎn)頂推法施工越來越多的被運(yùn)用到橋梁架設(shè)中。但是頂推法施工過程中,橋梁整體的體系轉(zhuǎn)換頻繁。隨著頂推作業(yè)的進(jìn)行結(jié)構(gòu)的坐標(biāo),位移以及受力狀態(tài)都在不斷的發(fā)生變化,使得施工過程中結(jié)構(gòu)受力比其他施工方式要復(fù)雜。本文以仙岳路-成功大道立交工程主線橋的頂推施工為背景,主要的工作如下:(1)簡(jiǎn)單介紹了頂推方法起源和頂推法施工的構(gòu)造;對(duì)頂推的方法和原理進(jìn)行了總結(jié);詳細(xì)說明了其頂推施工監(jiān)控系統(tǒng)的建立。(2)運(yùn)用大型通用有限元軟件ANSYS對(duì)鋼箱梁頂推施工的各個(gè)工況逐個(gè)建立三維仿真模型,根據(jù)基本工程資料,確定相關(guān)模型參數(shù)、選取合理的單元。對(duì)不同的工況進(jìn)行模擬頂推施工,確定施工過程中需要控制的參量。(3)針對(duì)頂推(拖拉)過程導(dǎo)梁從最大懸臂狀態(tài)至跨過成功大道時(shí),導(dǎo)梁從最大負(fù)彎矩狀態(tài)變換為最大正彎矩狀態(tài),工字鋼導(dǎo)梁上下翼緣板均有發(fā)生局部失穩(wěn)的現(xiàn)狀,建立了導(dǎo)梁精細(xì)化有限元模型,對(duì)導(dǎo)梁的截面形式提出了優(yōu)化建議、并對(duì)工字鋼導(dǎo)梁上下均設(shè)置了局部加勁肋,頂對(duì)過程在導(dǎo)梁關(guān)鍵部位布置了傳感器,理論分析計(jì)算結(jié)構(gòu)與現(xiàn)場(chǎng)實(shí)測(cè)相互應(yīng)證,保證了導(dǎo)梁結(jié)構(gòu)的安全運(yùn)行。(4)對(duì)實(shí)際頂推施工中的位移,應(yīng)變進(jìn)行實(shí)測(cè)。在對(duì)應(yīng)的工況下與有限元模型計(jì)算值進(jìn)行對(duì)比,實(shí)時(shí)調(diào)整模型參量,指導(dǎo)下一個(gè)施工工況。(5)針對(duì)頂推(拖拉)過程各個(gè)支撐滑塊支撐反力不斷變化、且有可能發(fā)生三點(diǎn)支撐的現(xiàn)實(shí)情況,通過建立底板、腹板區(qū)域精細(xì)化有限元模型仿真分析,得到底板與腹板交接區(qū)域通過滑塊是局部應(yīng)力很大極有可能發(fā)生局部失穩(wěn)的情況,建議對(duì)該區(qū)域增設(shè)縱、橫向局部加勁肋,并在改區(qū)域布置了傳感器,頂推(拖拉)過程應(yīng)力傳感器實(shí)測(cè)數(shù)據(jù)應(yīng)證了局部精細(xì)有限元仿真結(jié)果的正確性,所提出的增設(shè)局部加勁肋的建議保證了鋼箱梁底板通過滑塊時(shí)的安全,避免了鋼箱梁局部失穩(wěn)損傷事故的發(fā)生,是鋼箱梁順利實(shí)現(xiàn)頂推(拖拉)的重要技術(shù)保障措施。(6)頂推(拖拉)全過程不僅對(duì)鋼箱梁總體位移進(jìn)行檢測(cè)、而且對(duì)報(bào)告支撐墩在內(nèi)的附屬結(jié)構(gòu)進(jìn)行全程安全性監(jiān)測(cè),實(shí)施對(duì)有限元計(jì)算結(jié)果于施工實(shí)測(cè)結(jié)果進(jìn)行對(duì)比分析,一旦發(fā)生較大偏差立即分析原因,從而保證了整個(gè)橋梁頂推施工的安全。本文研究方法與所得結(jié)論可為同類橋梁施工提供參考。
[Abstract]:With the continuous development of bridge construction technology, bridge construction technology is constantly updated. Compared with other construction methods, the construction equipment needs less, is advantageous to the production organization, and can shorten the construction period. Based on these advantages, more and more construction methods are used in bridge erection. However, in the construction process of the jacking method, the system transformation of the whole bridge is frequent. With the continuous change of the coordinate displacement and stress state of the structure during the construction process the structural force is more complicated than other construction methods. The main work of this paper is as follows: (1) the origin of the thrusting method and the construction of the jacking method are briefly introduced, and the methods and principles of the thrusting are summarized. The establishment of monitoring system for jacking construction is explained in detail. (2) the 3D simulation model of steel box girder jacking construction is established one by using the large-scale universal finite element software ANSYS, and the relevant model parameters are determined according to the basic engineering data. Select reasonable units. The parameters to be controlled in the construction process are determined by simulating the jacking construction under different working conditions. (3) when the guide beam is in the state of maximum cantilever from the maximum cantilever state to the crossing of the main road of success in the process of pushing (towing), The guide beam is transformed from the maximum negative moment state to the maximum positive moment state, and the local instability occurs in the upper and lower flange plates of the guide beam of I-beam. The finite-element model of the guide beam is established, and the optimization suggestions for the section form of the guide beam are put forward. A local stiffening rib is set up for the I-beam guide beam up and down, and the top pair is arranged in the key part of the guide beam. The theoretical analysis and calculation structure and the field measurement verify each other. The safety operation of the guide beam structure is ensured. (4) the displacement and strain in the actual jacking construction are measured. The model parameters are adjusted in real time to guide the next construction condition. (5) the support reaction force of each support slider is constantly changing in the process of pushing (dragging). And it is possible to have the reality of three-point support. Through the simulation analysis of the finite-element model of the bottom plate and the web region, it is concluded that the local stress of the interface area between the bottom plate and the web through the sliding block is very large and the local instability is likely to occur. It is suggested that longitudinal and lateral local stiffeners should be added to the region, and sensors are arranged in the modified area. The measured data of the stress sensors during the push-pull process should prove the correctness of the local fine finite element simulation results. The suggestion of adding local stiffener ensures the safety of the steel box girder bottom plate when it passes through the slider, and avoids the occurrence of the local instability damage accident of the steel box girder. It is an important technical guarantee measure for the steel box girder to smoothly realize the pushing (towing). (6) the whole process of pushing (towing) not only detects the total displacement of the steel box girder, but also monitors the safety of the auxiliary structure, including the report supporting pier, in the whole process. The results of finite element calculation are compared with the measured results of construction, and the reasons are analyzed immediately once a large deviation occurs, thus ensuring the safety of the whole bridge jacking and pushing construction. The research method and conclusion of this paper can provide reference for the similar bridge construction.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U445.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 舒曉文,祁軍強(qiáng);伊萊·福爾肯大橋的頂推設(shè)計(jì)與施工[J];國(guó)外公路;2001年02期

2 徐化軒;頂推梁橋施工中可能出現(xiàn)的技術(shù)問題及對(duì)策[J];鐵道工程學(xué)報(bào);2002年02期

3 徐華軒;;頂推梁橋施工中可能出現(xiàn)的技術(shù)問題及對(duì)策[J];OVM通訊;2002年06期

4 趙如東;連續(xù)梁頂推技術(shù)的新發(fā)展[J];水運(yùn)工程;2004年03期

5 劉大洋;;頂推法施工工藝的探討[J];四川建材;2007年03期

6 陳繼光;;頂推法施工關(guān)鍵工藝改進(jìn)[J];筑路機(jī)械與施工機(jī)械化;2008年03期

7 何杰;于雪梅;;多點(diǎn)頂推在鋼筋混凝土連續(xù)箱梁中的具體應(yīng)用[J];中國(guó)建設(shè)信息;2008年08期

8 曹航;;采用頂推法施工的西德維納大橋[J];黑龍江交通科技;2011年09期

9 閔祥濤;劉濤;;橋梁頂推法施工工藝控制分析[J];現(xiàn)代商貿(mào)工業(yè);2011年23期

10 張連海;;頂推法施工橋梁[J];北方交通;2012年07期

相關(guān)會(huì)議論文 前3條

1 石毅生;;錢塘江第二大橋鐵路引橋預(yù)應(yīng)力鋼筋混凝土梁新穎單點(diǎn)頂推法[A];中國(guó)土木工程學(xué)會(huì)橋梁及結(jié)構(gòu)工程學(xué)會(huì)第九屆年會(huì)論文集[C];1990年

2 金偉;彭錦;;預(yù)應(yīng)力混凝土橋梁頂推法施工技術(shù)的理論與實(shí)踐[A];2014年4月建筑科技與管理學(xué)術(shù)交流會(huì)論文集[C];2014年

3 馬春生;李江山;郭范圍;彭向榮;;廣東省九江大橋設(shè)計(jì)[A];'95預(yù)應(yīng)力混凝土連續(xù)梁和剛構(gòu)橋?qū)W術(shù)會(huì)議論文集[C];1995年

相關(guān)重要報(bào)紙文章 前2條

1 劉三琴;一橋飛架 天塹變通途[N];南方日?qǐng)?bào);2006年

2 本報(bào)記者 沈剛 李瑾 本報(bào)特約通訊員 彭倫理 劉健 唐博學(xué);工人設(shè)計(jì)師王海[N];工人日?qǐng)?bào);2004年

相關(guān)博士學(xué)位論文 前1條

1 牛輝;空間拱肋組合橋梁頂推施工技術(shù)研究[D];浙江大學(xué);2012年

相關(guān)碩士學(xué)位論文 前10條

1 劉承啟;三拱肋下承式鋼拱橋頂推施工關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2015年

2 姚永鶴;大跨徑預(yù)應(yīng)力混凝土連續(xù)梁橋無跨中臨時(shí)墩頂推施工技術(shù)研究[D];浙江工業(yè)大學(xué);2014年

3 楊興華;頂推法施工自錨式懸索橋關(guān)鍵技術(shù)與控制[D];沈陽建筑大學(xué);2015年

4 沈國(guó)偉;曲線鋼箱梁橋的頂推(拖拉)監(jiān)控研究[D];蘭州交通大學(xué);2015年

5 李洪明;跨鐵路鋼箱梁橋頂推法施工關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2013年

6 楊輝;鋼箱梁步履式平移頂推受力特性與施工技術(shù)[D];南昌大學(xué);2010年

7 楊磊;混凝土斜連續(xù)梁頂推施工期風(fēng)險(xiǎn)評(píng)估與預(yù)防措施[D];長(zhǎng)沙理工大學(xué);2012年

8 徐甜;大跨度鋼箱梁頂推受力特性及監(jiān)測(cè)控制研究[D];長(zhǎng)沙理工大學(xué);2011年

9 龍煈;長(zhǎng)沙市福元路湘江大橋提籃式拱橋拼裝與頂推的控制技術(shù)[D];長(zhǎng)沙理工大學(xué);2012年

10 王鶴;下塢薊運(yùn)河特大橋7跨連續(xù)梁頂推施工技術(shù)研究[D];中南大學(xué);2012年

,

本文編號(hào):2359154

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2359154.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶33147***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com