基于大數(shù)據(jù)的尋位最優(yōu)路徑的分析與研究
[Abstract]:At present, the number of cars in our country is increasing, which brings convenience to the travel of thousands of families, and it is also a great test to the municipal construction and urban management of the city. The root causes of parking problems are limited number of parking spaces, insufficient information on garage location, improper garage management and illegal parking, etc. Because the shortage of parking space can not be greatly increased in the short term, the solution to the problem of urban parking depends on how to select the parking location and how to guide the optimal path. Therefore, this paper designs and implements an optimal parking guidance system based on big data. Using data processing technology, according to parking space information and other parameters, through information collection, transmission, processing and release, as well as client application several modules connected, using the computer to give the best parking lot location selection, According to the optimal path, parking guidance can not only facilitate the parking of users, but also play an important role in parking management. Based on the research background and significance of the subject, this paper first analyzes the problems facing parking in China, and compares the current algorithms of location finding and optimal path guidance. The practical significance and necessity of location finding algorithm and optimal path algorithm to solve the difficult parking problem are clarified. The main work of this paper is as follows: firstly, the research status of location finding algorithm and optimal path guidance algorithm at home and abroad are compared and analyzed, and the optimal path guidance algorithm suitable for this system is selected. An optimal location finding algorithm based on multi-exponential decision is proposed. Secondly, the optimal location finding algorithm and the optimal path guidance algorithm are verified by experiments, and the advantages and practicability of the algorithm are proved. Finally, the overall framework of optimal location finding and optimal path guidance system based on big data is designed, and the hardware and software experimental platform is set up, and the optimal location finding and optimal path guidance experiment is carried out. It realizes a series of system functions from data acquisition to information processing and publishing, and finally to the application of the system, which proves the feasibility and practicability of the algorithm and system in this paper. The experimental results show that the proposed optimal location finding and optimal path guidance system based on big data can solve the parking problem to some extent.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U491.7;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁瀟;錢(qián)志鴻;田洪亮;王雪;;基于馬爾可夫決策模型的異構(gòu)無(wú)線網(wǎng)絡(luò)切換選擇算法[J];物理學(xué)報(bào);2016年23期
2 劉婧;關(guān)宏志;賀玉龍;趙昕;;大城市中心區(qū)停車(chē)尋位研究[J];公路交通科技;2016年01期
3 黃翔;王志忠;郭建華;;Theoretical generalization of Markov chain random field from potential function perspective[J];Journal of Central South University;2016年01期
4 張素紅;李博;吳飛;楊廣達(dá);;基于物聯(lián)網(wǎng)的智能停車(chē)場(chǎng)管理系統(tǒng)設(shè)計(jì)及實(shí)現(xiàn)[J];物聯(lián)網(wǎng)技術(shù);2015年11期
5 張磊;;基于logit模型的停車(chē)費(fèi)率變化對(duì)居民出行方式的影響分析[J];交通與運(yùn)輸(學(xué)術(shù)版);2015年01期
6 戴帥;劉金廣;朱建安;鞏建國(guó);;中國(guó)城市機(jī)動(dòng)化發(fā)展情況及政策分析[J];城市交通;2015年02期
7 田瓊;楊麗;羅婷;;基于馬爾科夫鏈的停車(chē)尋位模型與仿真[J];交通運(yùn)輸系統(tǒng)工程與信息;2015年01期
8 王樹(shù)西;李安渝;;Dijkstra算法中的多鄰接點(diǎn)與多條最短路徑問(wèn)題[J];計(jì)算機(jī)科學(xué);2014年06期
9 姚思泉;張臨;陳智存;熊煉;;LTE HeNB的X2切換控制面的研究與應(yīng)用[J];移動(dòng)通信;2014年08期
10 羅從雙;王儀;;中小城市商業(yè)區(qū)停車(chē)調(diào)查與分析[J];河南城建學(xué)院學(xué)報(bào);2013年04期
相關(guān)碩士學(xué)位論文 前10條
1 劉志凱;基于Web的Python編程環(huán)境研究[D];新疆農(nóng)業(yè)大學(xué);2015年
2 劉敏;大型停車(chē)場(chǎng)車(chē)輛定位與停車(chē)誘導(dǎo)研究[D];天津大學(xué);2014年
3 袁德宇;類人猿機(jī)器人復(fù)雜地貌下路徑搜索與全方位步行研究[D];哈爾濱工業(yè)大學(xué);2014年
4 張樹(shù)德;基于復(fù)雜網(wǎng)絡(luò)理論的城市道路網(wǎng)絡(luò)脆弱性研究[D];哈爾濱工業(yè)大學(xué);2014年
5 馮璐璐;基于物聯(lián)網(wǎng)的停車(chē)泊位誘導(dǎo)系統(tǒng)關(guān)鍵技術(shù)研究[D];吉林大學(xué);2013年
6 安麗君;基于嵌入式的物聯(lián)網(wǎng)信息采集系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京郵電大學(xué);2013年
7 雒娜;基于ECLIPSE平臺(tái)的OPS插件開(kāi)發(fā)[D];上海交通大學(xué);2012年
8 趙新;基于移動(dòng)GIS的Dijkstra算法的優(yōu)化及應(yīng)用研究[D];成都理工大學(xué);2012年
9 孫磊;城市中心區(qū)自駕車(chē)通勤者停車(chē)選擇行為研究[D];哈爾濱工業(yè)大學(xué);2010年
10 李舒晨;網(wǎng)絡(luò)信息采集處理平臺(tái)的研究[D];北京交通大學(xué);2009年
,本文編號(hào):2349401
本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2349401.html