SQUID量子超材料體系的非經(jīng)典特性研究
本文選題:量子超材料 + 超導(dǎo)量子干涉器; 參考:《湖南師范大學(xué)》2016年碩士論文
【摘要】:超材料指的是一些具有人工設(shè)計(jì)的結(jié)構(gòu)并呈現(xiàn)出天然材料所不具備的超常物理性質(zhì)的復(fù)合材料。超材料具備天然材料所不具備的特殊性質(zhì),而且這些性質(zhì)主要來(lái)自人工的特殊結(jié)構(gòu)。超材料是通過(guò)在多種物理結(jié)構(gòu)上的設(shè)計(jì)來(lái)突破某些表觀自然規(guī)律的限制,從而獲得超常的材料功能。超材料的出現(xiàn)表明可人工獲得與自然界中的物質(zhì)具有迥然不同的超常物理性質(zhì)的“新物質(zhì)”,把功能材料的設(shè)計(jì)和開(kāi)發(fā)帶入一個(gè)嶄新的天地。對(duì)于電磁超材料,以往人們分析問(wèn)題都是從麥克斯韋方程出發(fā),結(jié)構(gòu)簡(jiǎn)單時(shí)問(wèn)題的復(fù)雜度還可以接受,但是結(jié)構(gòu)一復(fù)雜起來(lái),就能難以分析。超材料的話就不管最小單元里面的結(jié)構(gòu)有多復(fù)雜,只管其整體等效出來(lái)的電磁參數(shù),這種等效并且具有很高的精確度,這就大大降低了材料設(shè)計(jì)的復(fù)雜度。另一方面,超材料的出現(xiàn)也極大擴(kuò)展了人們對(duì)電磁材料的選擇范圍,從負(fù)值到正值,從無(wú)窮小到無(wú)窮大,從單負(fù)材料到雙負(fù)材料,從均勻的材料到漸變的材料,等等。這都是超材料的貢獻(xiàn)。當(dāng)然這個(gè)概念也不僅限于電磁波,它已經(jīng)延伸到了聲波,熱傳導(dǎo),靜電場(chǎng),靜磁場(chǎng),地震波,等等。這個(gè)種設(shè)計(jì)微觀結(jié)構(gòu)來(lái)控制其宏觀特性的思維被廣泛應(yīng)用到各種領(lǐng)域。量子超材料把超材料開(kāi)展到了量子層次。它可以利用量子力學(xué)規(guī)律和方法來(lái)操控超材料中電磁波的傳播和量子態(tài)。因此,量子超材料體系不僅要滿足麥克斯韋Maxwell方程,還有滿足Schr?dinger方程。量子超材料體系的性質(zhì)可反映其在微納尺度上電磁波和物質(zhì)波共存的特征。量子超材料本質(zhì)上是具有空間上擴(kuò)展性的量子體系,它允許在量子力學(xué)層次操控電磁波在其中的傳播。它具有以下三個(gè)特征:(1)由具有可操控參數(shù)的相干量子單元器件組成;(2)相干量子單元器件的量子態(tài)具有可操控性;(3)相干量子單元器件應(yīng)該具有較長(zhǎng)的量子相干性時(shí)間。本文研究以超導(dǎo)量子干涉器(SQUID)為基本單元的量子超材料體系的非經(jīng)典特性。具體研究了SQUID量子超材料體系中光場(chǎng)的非經(jīng)典性質(zhì)、SQUID超材料的非經(jīng)典性質(zhì)以及光與SQUID量子超材料之間的量子關(guān)聯(lián)和量子糾纏。本文的組織結(jié)構(gòu)如下:第一章介紹本文的研究背景和現(xiàn)狀。在簡(jiǎn)單介紹了超導(dǎo)傳輸線的量子化過(guò)程和兩種類型的SQUID,系統(tǒng)討論了SQUID量子超材料的經(jīng)典描述和量子描述。第二章研究SQUID量子超材料體系中光場(chǎng)的非經(jīng)典性質(zhì)。在SQUID量子超材料體系的量子動(dòng)力學(xué)的基礎(chǔ)上,選擇幾種典型的初態(tài)研究SQUID量子超材料體系中光子的非經(jīng)典統(tǒng)計(jì)性質(zhì)和光場(chǎng)的正交壓縮特性。第三章研究SQUID量子超材料自身的非經(jīng)典性質(zhì)。通過(guò)引入SQUID量子超材料的集體算符把SQUID量子超材料體系轉(zhuǎn)化為一個(gè)有效的單模玻色子系統(tǒng),研究了SQUID量子超材料集體激發(fā)的量子統(tǒng)計(jì)性和量子壓縮特性。第四章研究光場(chǎng)與SQUID超材料之間的量子關(guān)聯(lián)和量子糾纏。對(duì)于幾種典型的初態(tài)計(jì)算了光場(chǎng)與SQUID超材料之間的二階交叉關(guān)聯(lián)函數(shù),討論了Cauchy-Schwarz不等式違背的條件,即出現(xiàn)非經(jīng)典關(guān)聯(lián)的條件。研究了光場(chǎng)和SQUID超材料的量子糾纏動(dòng)力學(xué)性質(zhì)。第五章是本文的結(jié)和展望。
[Abstract]:Supermaterial refers to a number of composite materials with artificially designed structures and unusually physical properties that natural materials do not possess. Supermaterials have special properties that natural materials do not possess, and these properties are mainly derived from artificial special structures. Supermaterials are through the design of a variety of physical structures to break some of them. The emergence of supermaterials shows that the design and development of functional materials can be brought into a new world. The complexity of the problem is still acceptable when the Maxwell equation is simple, but it is difficult to analyze the complexity of the structure when the structure is complicated. The complexity of the design. On the other hand, the appearance of supermaterials also greatly expanded the selection range of electromagnetic materials, from negative to positive, from infinitesimal to infinity, from single to double negative material, from uniform material to gradual material, etc., which are all contributions of supermaterials. It has been extended to sound waves, heat conduction, electrostatic fields, static magnetic fields, seismic waves and so on. This kind of thinking that designs microstructures to control their macroscopic properties is widely used in various fields. Quantum supermaterials carry supermaterials to the quantum level. It can use quantum mechanics laws and methods to manipulate the propagation of electromagnetic waves in supermaterials and to control the propagation of electromagnetic waves in supermaterials. Quantum state. Therefore, the quantum supermaterial system not only satisfies the Maxwell Maxwell equation, but also satisfies the Schr? Dinger equation. The properties of the quantum supermaterial system can reflect the characteristics of the coexistence of electromagnetic wave and material wave on the micro and nanoscale. The quantum supermaterial is essentially a quantum system with spatial extensibility, which allows the quantum mechanics to be in quantum mechanics. The layer controls the propagation of electromagnetic waves in it. It has the following three characteristics: (1) composed of coherent quantum cell devices with manipulable parameters; (2) the quantum state of the coherent quantum cell device has controllability; (3) the coherent quantum cell device should have a long quantum coherence time. This paper studies the superconducting quantum interference (SQUID) quantum interferometer. For the nonclassical properties of the quantum supermaterial system of the basic unit, the nonclassical properties of the light field in the SQUID quantum supermaterial system, the non classical properties of the SQUID supermaterials and the quantum correlation and quantum entanglement between the light and the SQUID quantum supermaterials are studied. The structure of this paper is as follows: the first chapter introduces the background and the present study of this paper. The quantization process of superconducting transmission lines and the two types of SQUID are briefly introduced. The classical description and quantum description of SQUID quantum supermaterials are discussed systematically. The second chapter studies the nonclassical properties of the light field in the SQUID quantum supermaterial system. On the basis of the quantum dynamics of the SQUID quantum supermaterial system, the selection of several typical initial The non classical statistical properties of photons in SQUID quantum supermaterial system and the orthogonal compression properties of the light field are studied. The third chapter studies the nonclassical properties of SQUID quantum supermaterials themselves. By introducing the collective operator of SQUID quantum supermaterials to transform the SQUID quantum supermaterial system into an effective single mode boson system, the SQUID quantity is studied. The quantum statistics and quantum squeezing properties of the Zi Chao material are collectively excited. The fourth chapter studies the quantum correlation and quantum entanglement between the light field and the SQUID supermaterial. For several typical initial states, we calculate the two order cross correlation function between the light field and the SQUID supermaterial, and discuss the conditions for the violation of the Cauchy-Schwarz inequality, that is, the non classical form appears. The quantum entanglement dynamics of light field and SQUID metamaterials are studied. The fifth chapter is the conclusion and Prospect of this paper.
【學(xué)位授予單位】:湖南師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:O413;TB39
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 邱尚涌;SQUID在地球物理中的應(yīng)用[J];低溫與超導(dǎo);1982年03期
2 王其俊;SQUID儀器的發(fā)展動(dòng)向[J];低溫與超導(dǎo);1984年04期
3 王其俊;混合式RF-SQUID的設(shè)計(jì)[J];低溫物理;1984年03期
4 呂淑芬;;一種新型診斷技術(shù)——SQUID[J];世界科學(xué);1991年12期
5 丁紅勝,韓冰,陳賡華,張利華,楊乾聲;一種抑制市電對(duì)高溫SQUID干擾的新方法[J];物理學(xué)報(bào);2002年02期
6 張峰會(huì),丁紅勝,何豫生,陳賡華,韓士吉,董世迎,顏曉明,楊乾聲,陳兆甲,金鐸;掃描SQUID顯微鏡的研制及其在磁成像和無(wú)損檢測(cè)中的應(yīng)用[J];低溫物理學(xué)報(bào);2004年01期
7 ;Preparation of Entanglement and Schr銉dinger Cat States of Superconducting Quantum Interference Devices Qubits via Coupling to a Microwave Cavity[J];Communications in Theoretical Physics;2008年03期
8 花濤;許偉偉;史建新;安德越;孫國(guó)柱;于揚(yáng);吳培亨;;Tuning an rf-SQUID flux qubit system’s potential with magnetic flux bias[J];Chinese Physics B;2012年09期
9 ZHANG ShuLin;ZHANG GuoFeng;WANG YongLiang;ZENG Jia;QIU Yang;LIU Ming;KONG XiangYan;XIE XiaoMing;;A novel superconducting quantum interference device for biomagnetic measurements[J];Chinese Science Bulletin;2013年24期
10 王瑞蘭;一種穩(wěn)定性好的點(diǎn)接觸DC-SQUID結(jié)構(gòu)[J];低溫與超導(dǎo);1982年02期
相關(guān)會(huì)議論文 前6條
1 D.P.Chiang;W.S.Tse;;INVESTIGATION OF Fe:YAG CRYSTALS GROWTH BY THE CZOCHRALSKI METHOD WITH RAMAN SCATTERING AND SUPER-CONDUCTING QUANTUM INTERFERENCEDEVICE(SQUID)[A];第十四屆全國(guó)光散射學(xué)術(shù)會(huì)議論文摘要集[C];2007年
2 石惠敏;於亞飛;張智明;;在CircuitQED中用一個(gè)SQUID實(shí)現(xiàn)Toffoli門[A];第十五屆全國(guó)量子光學(xué)學(xué)術(shù)報(bào)告會(huì)報(bào)告摘要集[C];2012年
3 王赤軍;;高溫SQUID在物探上的應(yīng)用研究[A];中國(guó)地質(zhì)科學(xué)院“九五”科技成果匯編[C];2001年
4 史鵬;李炬;;SQUID結(jié)合渦旋電流用于鈹材殘余應(yīng)力檢測(cè)的計(jì)算機(jī)模擬[A];中國(guó)核學(xué)會(huì)核材料分會(huì)2007年度學(xué)術(shù)交流會(huì)論文集[C];2007年
5 史鵬;李炬;董平;何立峰;趙麗芳;徐芳;;SQUID結(jié)合渦旋電流法用于鈹材殘余應(yīng)力檢測(cè)的可行性[A];中國(guó)工程物理研究院科技年報(bào)(2008年版)[C];2009年
6 王赤軍;陳曉東;趙毅;王寶珍;;77K SQUID磁強(qiáng)計(jì)在TEM上的應(yīng)用研究[A];1997年中國(guó)地球物理學(xué)會(huì)第十三屆學(xué)術(shù)年會(huì)論文集[C];1997年
相關(guān)碩士學(xué)位論文 前8條
1 葛俊;磁性摻雜拓?fù)浣^緣體輸運(yùn)性質(zhì)的研究[D];南京大學(xué);2015年
2 謝立軍;Low-Tc SQUID瞬變電磁系統(tǒng)的大功率發(fā)射機(jī)關(guān)鍵技術(shù)研究[D];吉林大學(xué);2016年
3 漆超;SQUID量子超材料體系的非經(jīng)典特性研究[D];湖南師范大學(xué);2016年
4 呂海峰;熱力學(xué)噪聲驅(qū)動(dòng)下DC-SQUID系統(tǒng)的隨機(jī)動(dòng)力學(xué)[D];華中師范大學(xué);2004年
5 江忠勝;SQUID無(wú)損檢測(cè)中的相關(guān)問(wèn)題研究[D];北京科技大學(xué);2008年
6 史鵬;SQUID結(jié)合渦旋電流法用于鈹材殘余應(yīng)力檢測(cè)的可行性研究[D];中國(guó)工程物理研究院;2007年
7 蔣鳳英;高溫dc-SQUID的制備及其在低場(chǎng)核磁共振中的應(yīng)用研究[D];北京郵電大學(xué);2013年
8 鐘超榮;掃描SQUID顯微鏡分辨率的改進(jìn)及其在漏電電流無(wú)損檢測(cè)中的應(yīng)用研究[D];重慶大學(xué);2005年
,本文編號(hào):2067848
本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/2067848.html