網絡借貸(P2P)平臺的量化監(jiān)管研究
本文選題:網絡借貸(P2P) 切入點:量化監(jiān)管 出處:《華南理工大學》2015年碩士論文
【摘要】:網絡借貸(P2P)作為一種網絡金融時代下的金融創(chuàng)新模式,對于完善我國金融體系、彌補中小企業(yè)融資缺口以及緩解民間資本投資需求具有重要意義。隨著網絡借貸(P2P)平臺數量的劇增,網絡借貸(P2P)行業(yè)的競爭也日漸激烈,相關風險也在不斷積聚,2013年以來網絡借貸(P2P)平臺不斷出現詐騙、跑路和體現困難等風險事件,大大阻礙行業(yè)發(fā)展。因此,網絡借貸(P2P)監(jiān)管政策的出臺迫在眉睫,通過監(jiān)管改變現狀,促使行業(yè)健康發(fā)展。但是,網絡借貸(P2P)作為一個新興行業(yè),監(jiān)管部門應給予其更大的發(fā)展空間,避免出現“一管就死”。為此,本文嘗試基于一系列量化方法建立一套適合我國網絡借貸(P2P)運營特征的量化監(jiān)管體系,為銀監(jiān)會監(jiān)管網絡借貸(P2P)平臺提供參考。本文在定性分析方面,首先通過一些指標數據對我國網絡借貸(P2P)平臺的發(fā)展現狀進行歸納總結,包括平臺的運營情況和運營模式,并指出我國網絡借貸(P2P)行業(yè)正面臨著法律風險、商業(yè)經營風險、信用違約風險等問題。接著,分析國內網絡借貸(P2P)監(jiān)管的發(fā)展,確定我國監(jiān)管層對待網絡借貸(P2P)這一新興行業(yè)持有鼓勵和支持的態(tài)度,為之后的量化分析奠定基礎。在量化監(jiān)管研究方面,針對我國網絡借貸(P2P)平臺的風險特征,借鑒傳統(tǒng)線下信用評級方法,本文首先運用相關性分析和主成分分析方法構建監(jiān)管評價指標體系,并基于我國網絡借貸(P2P)平臺發(fā)展的特點選取基于熵值修正G1組合賦權的評價模型進行監(jiān)管評價,以此體現監(jiān)管層的適度監(jiān)管和分類、分級監(jiān)管的原則。熵值修正G1組合賦權能同時反映客觀數據信息和專家意見,由此反映平臺運營特征及監(jiān)管政策,這種組合賦權方法更適合并能更有效地對我國網絡借貸(P2P)平臺進行監(jiān)管評價。其次,在對平臺評價結果的基礎上,建立基于Logistic回歸模型的風險預警模型,通過實證研究證明該模型能有效地對我國網絡借貸(P2P)平臺的風險進行預測,為監(jiān)管程序提供決策支持。最后,詳細分析了監(jiān)管評價指標體系、監(jiān)管評價模型和風險預警模型在實際監(jiān)管過程中的應用,以量化手段落實網絡借貸(P2P)的分類監(jiān)管、適度監(jiān)管、科學監(jiān)管。
[Abstract]:As a kind of financial innovation mode in the era of network finance, network lending and lending (P2P) can improve the financial system of our country. It is of great significance to make up for the financing gap of small and medium-sized enterprises and to ease the demand for private capital investment. With the rapid increase in the number of online lending platforms, the competition in the online lending and lending industry is becoming increasingly fierce. The risks are also accumulating. Since 2013, there have been a lot of risks such as fraud, running the road and difficulties in implementing the P2P platform, which has greatly hindered the development of the industry. Therefore, the introduction of a regulatory policy on online lending and lending is imminent. Changing the status quo through regulation to promote the healthy development of the industry. However, as a new industry, regulators should give them more room for development and avoid the "death of one tube". Based on a series of quantitative methods, this paper attempts to establish a set of quantitative regulatory system suitable for the characteristics of China's network lending and lending, which provides a reference for the CBRC to supervise the network lending and lending platform. First of all, through some index data, this paper summarizes the current situation of the development of China's network lending platform, including the platform's operation and operation mode, and points out that our country's network lending and lending industry is facing legal risks and business risks. Credit default risk and other issues. Then, by analyzing the development of domestic online lending and lending (P2P) regulation, it is determined that China's regulators have an encouraging and supportive attitude towards the emerging industry of online lending and lending (P2P). In the research of quantitative supervision, aiming at the risk characteristics of our country's network lending platform, we draw lessons from the traditional offline credit rating method. In this paper, we first use the methods of correlation analysis and principal component analysis to construct the regulatory evaluation index system, and based on the characteristics of the development of China's network lending and lending platform, we select the evaluation model based on entropy modified G1 combination weight to conduct regulatory evaluation. According to the principle of appropriate supervision and classification and hierarchical supervision, entropy correction G1 combination weight can reflect both objective data information and expert opinion, and thus reflect platform operation characteristics and regulatory policies. This combination weighting method is more suitable and effective for monitoring and evaluation of China's network lending and lending platform. Secondly, based on the evaluation results of the platform, a risk early warning model based on Logistic regression model is established. It is proved by empirical research that the model can effectively predict the risk of China's network lending and lending platform and provide decision support for the regulatory process. Finally, the monitoring evaluation index system is analyzed in detail. The application of supervision evaluation model and risk warning model in the process of actual supervision, the classification supervision, moderate supervision and scientific supervision of network lending and lending are carried out by quantitative means.
【學位授予單位】:華南理工大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:F724.6;F832.4
【參考文獻】
相關期刊論文 前10條
1 牛源;;中國商業(yè)銀行風險預警系統(tǒng)的構建及其實證研究[J];北方經濟;2007年10期
2 王艷;陳小輝;邢增藝;;網絡借貸中的監(jiān)管空白及完善[J];當代經濟;2009年24期
3 吳曉光;曹一;;論加強P2P網絡借貸平臺的監(jiān)管[J];南方金融;2011年04期
4 辛玲;;我國上市銀行風險的模糊綜合評價[J];中國管理信息化;2009年12期
5 楊婕;;互聯網金融背景下P2P網絡借貸平臺的風險管理研究[J];東方企業(yè)文化;2013年19期
6 魏鵬;;中國互聯網金融的風險與監(jiān)管研究[J];金融論壇;2014年07期
7 王犁;;我國商業(yè)銀行信用指標體系及綜合評價[J];河北工程大學學報(社會科學版);2009年01期
8 陳衍泰,陳國宏,李美娟;綜合評價方法分類及研究進展[J];管理科學學報;2004年02期
9 鈕明;;“草根”金融P2P信貸模式探究[J];金融理論與實踐;2012年02期
10 遲國泰;祝志川;張玉玲;;基于熵權-G1法的科技評價模型及實證研究[J];科學學研究;2008年06期
相關博士學位論文 前4條
1 李剛;基于科學發(fā)展觀的人的全面發(fā)展評價模型及實證研究[D];大連理工大學;2010年
2 雒春雨;P2P網絡借貸中的投資決策模型研究[D];大連理工大學;2012年
3 盧永艷;基于面板數據的上市公司財務困境預測[D];東北財經大學;2012年
4 齊菲;基于小樣本的商業(yè)銀行信用評級模型研究[D];大連理工大學;2012年
相關碩士學位論文 前4條
1 沈霞;P2P網絡貸款的法律監(jiān)管探究[D];華東政法大學;2012年
2 劉峙廷;我國P2P網絡信貸風險評估研究[D];廣西大學;2013年
3 徐文杰;P2P網絡借貸平臺定價問題研究[D];東北財經大學;2013年
4 黃瓊;P2P借貸行業(yè)的發(fā)展與風險控制[D];蘭州大學;2014年
,本文編號:1657547
本文鏈接:http://www.lk138.cn/jingjilunwen/guojimaoyilunwen/1657547.html