中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

TMT對原代海馬神經(jīng)元損傷與BDNF保護作用研究

發(fā)布時間:2018-07-22 20:43
【摘要】:研究背景和目的: 三氯甲基錫(Trimethyltin,TMT)是一種重要的職業(yè)危害毒物,也是一種重要的環(huán)境污染物。急性TMT暴露可引起多系統(tǒng)主要包括神經(jīng)系統(tǒng)的損害。TMT作用于中樞神經(jīng)系統(tǒng),主要損傷作用機制為引起神經(jīng)細胞凋亡,引起神經(jīng)系統(tǒng)炎性反應,對神經(jīng)組織造成氧化損傷等。TMT可以選擇性地誘導大腦邊緣系統(tǒng),特別是海馬神經(jīng)元死亡,造成神經(jīng)系統(tǒng)損傷效應。研究表明,BDNF在中樞神經(jīng)系統(tǒng)的主要作用是調(diào)節(jié)海馬神經(jīng)突觸可塑性。TMT暴露的大鼠大腦BDNF表達下調(diào),而過表達BDNF的神經(jīng)元具有拮抗TMT神經(jīng)毒性的作用。但TMT對大腦神經(jīng)元的損傷機制特別是對神經(jīng)元樹突棘的損傷研究還不清楚,并且BDNF拮抗TMT損傷發(fā)揮神經(jīng)保護作用的機制尚待進一步研究。因此,本課題選取TMT及BDNF為研究內(nèi)容,試圖理解TMT對神經(jīng)元的損傷作用機制及BDNF保護作用的分子機制,并為治療和預防TMT職業(yè)暴露造成的神經(jīng)元損傷提供思路。 突觸可塑性指突觸效率的功能性增強或降低,同時神經(jīng)信號傳遞強度的變化伴隨著神經(jīng)元突觸的結構變化。并且,BDNF參與調(diào)節(jié)活動依賴的樹突棘發(fā)育及可塑性。近期研究表明BDNF可以作為成年腦中活動依賴性調(diào)節(jié)因子參與調(diào)控神經(jīng)結構和功能變化。BDNF從樹突分泌出來后,立即與神經(jīng)營養(yǎng)因子受體TrkB結合,進而促進突觸前神經(jīng)遞質的釋放并且增加突觸后蛋白的轉錄翻譯水平。Tau蛋白主要表達于神經(jīng)元樹突軸,獨立或與其他微管相關蛋白協(xié)同調(diào)節(jié)樹突軸微管功能。在神經(jīng)細胞中,tau蛋白與細胞膜相聯(lián)系或與微管發(fā)生相互作用。Tau蛋白表達或者結構的變化可能影響其穩(wěn)定微管蛋白的功能。在生理條件下,tau蛋白可能在不同的位點發(fā)生磷酸化改變,進而影響其穩(wěn)定微管的功能。成熟神經(jīng)元可以利用微管的動態(tài)性保持細胞體系的彈性,以適應神經(jīng)網(wǎng)絡發(fā)生的各種變化。 方法: 第一部分TMT對神經(jīng)元毒性的觀察 以原代培養(yǎng)的胚胎期18天海馬神經(jīng)元為模型,用TMT處理后,用CCK-8的方法觀測BDNF對TMT的保護作用,觀察TMT處理后神經(jīng)元樹突棘形態(tài)的影響以及BDNF的保護作用,并明確TMT對神經(jīng)元樹突棘毒性的特征; 第二部分BDNF對神經(jīng)元突觸和樹突棘生長影響的觀察 以原代培養(yǎng)的胚胎期18天海馬神經(jīng)元為模型,用BDNF處理,觀察對原代培養(yǎng)海馬神經(jīng)元突觸生長和樹突棘形態(tài)的影響;利用質粒轉染GFP或RFP標記原代海馬神經(jīng)元樹突棘,細胞免疫熒光化學觀測tau蛋白和微管的共定位情況,突觸綜合體測量BDNF處理后突觸生長的變化,westernblot檢測tau蛋白及其磷酸化變化,明確BDNF處理海馬神經(jīng)元后,神經(jīng)元的形態(tài)突觸可塑性的變化以及tau蛋白所起的作用; 第三部分BDNF對Tau蛋白磷酸化及細胞分布的觀察 以RA分化的人神經(jīng)母細胞瘤SH-SY5Y和原代培養(yǎng)的胚胎期18天海馬神經(jīng)元為模型,用BDNF處理后,采用細胞免疫熒光化學的方法觀察tau蛋白的亞細胞分布情況,,Leica軟件測量SH-SY5Y細胞的突觸生長情況,westernblot檢測tau蛋白表達變化,明確tau蛋白亞細胞分布和BDNF處理后細胞的突觸生長的關系; 結果: 第一部分TMT引起樹突棘的異常形態(tài)改變 TMT處理體外培養(yǎng)14天的原代海馬神經(jīng)元24h,CCK-8檢測細胞活力顯著下降;加入BDNF與TMT共刺激后,CCK-8檢測細胞活力無顯著上升。原代海馬神經(jīng)元體外培養(yǎng)7天時轉染GFP質粒,培養(yǎng)至20天,TMT和/或BDNF處理24h后固定細胞,共聚焦顯微鏡發(fā)現(xiàn)TMT處理后神經(jīng)元樹突棘出現(xiàn)異常圓形增大。加入BDNF處理后,樹突棘的異常圓形增大有減少的趨勢。BDNF與LiCl共刺激能夠同樣使神經(jīng)元樹突棘出現(xiàn)與TMT處理后高度相似的異常圓形增大。Westerbnlot實驗結果表明,BDNF處理后可以同時在原代培養(yǎng)的海馬神經(jīng)元磷酸化Akt和ERK。而鋰單獨似乎不能影響Akt和ERK的磷酸化狀態(tài)。當鋰與BDNF同時作用時,BDNF誘導的ERK的磷酸化沒有影響,但鋰卻抑制BDNF誘導的Akt磷酸化。TMT以及BDNF和LiCl聯(lián)合作用產(chǎn)生的神經(jīng)元樹突棘異常增大可能與ERK與PI3K-Akt之間的cross-talk平衡被破壞有關。 第二部分BDNF通過tau蛋白調(diào)節(jié)突觸和樹突棘生長 BDNF處理體外培養(yǎng)14天的海馬神經(jīng)元24h,Tau蛋白的表達都顯著升高,Ser262位點的磷酸化狀態(tài)在BDNF刺激后具有下降的趨勢。細胞免疫熒光化學實驗也證明tau蛋白與微管蛋白在BDNF處理后的共定位得以增強。BDNF處理后tau蛋白的表達變化與樹突棘密度的增加一致。運用shRNA技術在體外培養(yǎng)7天時下調(diào)tau蛋白表達水平后,培養(yǎng)至21天海馬神經(jīng)元樹突棘密度顯著下降。并且在shRNA下調(diào)tau蛋白的海馬神經(jīng)元中,24h BDNF刺激不能增加神經(jīng)元的樹突棘密度。 第三部分BDNF調(diào)節(jié)tau蛋白的磷酸化與亞細胞分布 通過免疫細胞化學方法,我們發(fā)現(xiàn)在未分化的缺乏神經(jīng)突起的SH-SY5Y細胞中,tau蛋白形成一個球體。相反,在維甲酸誘導分化5天的SH-SY5Y細胞中,tau蛋白分散分布在神經(jīng)細胞突起和胞體中。通過Western blot檢測方法,我們發(fā)現(xiàn)維甲酸的處理也增加了總tau蛋白水平而降低tau蛋白Ser262磷酸化水平。Tau蛋白表達上調(diào)和tau蛋白ser262磷酸化水平的下調(diào)與神經(jīng)細胞突起長度呈相關性(相關因子分別為r=0.94和r=-0.98)。當原E18海馬神經(jīng)元用微管解聚劑nocodazole處理后,新生的神經(jīng)元突起丟失并且發(fā)生tau蛋白轉移到胞體的現(xiàn)象。這種遠離突起的過程可以被BDNF一定程度上逆轉。 研究結論 基于以上研究結果,我們得出以下研究結論:TMT處理體外培養(yǎng)的海馬神經(jīng)元后發(fā)現(xiàn)神經(jīng)元的樹突棘出現(xiàn)異常的增大現(xiàn)象,可能是TMT的神經(jīng)毒性表現(xiàn)。BDNF具有保護TMT樹突棘損傷的潛力。TMT處理以及BDNF和LiCl聯(lián)合作用產(chǎn)生的神經(jīng)元樹突棘異常增大可能與ERK與Akt之間的cross-talk平衡被破壞有關。BDNF能夠調(diào)節(jié)原代海馬神經(jīng)元tau蛋白的表達,這樣的調(diào)節(jié)具有劑量依賴關系和時效依賴關系。通過質粒轉染原代培養(yǎng)海馬神經(jīng)元,下調(diào)tau蛋白表達,BDNF刺激神經(jīng)元樹突棘生長的現(xiàn)象被抑制,說明tau蛋白可能參與了BDNF調(diào)節(jié)神經(jīng)元突觸及樹突棘生長的信號通路。進一步實驗表明,BDNF調(diào)節(jié)樹突棘可塑性的作用可能是通過調(diào)節(jié)tau蛋白的表達量進而影響tau蛋白穩(wěn)定微管能力來實現(xiàn)的;tau蛋白Ser262位點的磷酸化水平,總tau蛋白的表達量以及tau蛋白的亞細胞分布變化與神經(jīng)細胞突觸生長的顯著相關,tau蛋白的表達增加以及Ser262位點的去磷酸化可能以利于神經(jīng)細胞突觸的生長。本實驗為TMT的神經(jīng)毒性特別是對海馬神經(jīng)元樹突棘的損傷提供新的證據(jù),也揭示了BDNF可以通過tau蛋白調(diào)節(jié)突觸以及樹突棘生長發(fā)揮神經(jīng)保護作用。
[Abstract]:Research background and purpose:
Three chloromethyl tin (Trimethyltin, TMT) is an important occupational hazard and an important environmental pollutant. Acute TMT exposure can cause the damage of multiple systems mainly including the nervous system damage to the central nervous system. The main mechanism of injury is to cause the apoptosis of the nerve cells, the inflammatory reaction of the nervous system, and the nervous system. .TMT can selectively induce the brain marginal system, especially the hippocampal neuron death, and cause the damage effect of the nervous system. The main role of BDNF in the central nervous system is to regulate the down regulation of BDNF expression in the rat brain of the hippocampal synaptic plasticity.TMT exposure, and the neurons that overexpress BDNF It has an antagonistic effect on the neurotoxicity of TMT. However, the damage mechanism of TMT on brain neurons, especially the damage of neuron dendrites, is not clear, and the mechanism of BDNF antagonism to the neuroprotective effect of TMT damage remains to be further studied. Therefore, this topic selects TMT and BDNF as the research content to try to understand the damage of TMT to neurons. The mechanisms and mechanisms of BDNF protection are also used to provide ideas for the treatment and prevention of neuronal damage caused by occupational exposure to TMT.
Synaptic plasticity refers to the functional enhancement or reduction of synaptic efficiency, and the changes in the intensity of neural signal transduction are accompanied by structural changes in synapses. And BDNF participates in the development and plasticity of dendritic spines that regulate activity dependent dendrites. Recent studies have shown that BDNF can be used as a regulatory factor in the adult brain to regulate neuronodes. The structure and function change.BDNF is secreted from the dendrite and immediately combines with the neurotrophic factor receptor TrkB, thereby promoting the release of the presynaptic neurotransmitter and increasing the transcriptional translation level of the postsynaptic protein, which is mainly expressed in the neuron dendrite axis, independent or in coordination with other microtubule related proteins to regulate the function of the dendritic axis microtubule. In neural cells, tau protein is associated with cell membrane or interaction with microtubule, the expression of.Tau protein or changes in structure may affect the function of its stable microtubule. Under physiological conditions, tau protein may be phosphorylated at different sites, and then affect the function of its microtubule. Mature neurons can use microtubule. The dynamic nature of the tube maintains the flexibility of the cell system to accommodate the changes occurring in the neural network.
Method:
The observation of the toxicity of TMT in the first part
18 days of primary cultured hippocampal neurons were used as a model. After treatment with TMT, the protective effect of BDNF on TMT was observed by CCK-8. The effects of TMT on the morphology of dendritic spines and the protective effect of BDNF were observed, and the characteristics of the toxicity of TMT to the dendritic spines were also identified.
The second part is the observation of the effect of BDNF on the growth of neuron synapses and dendritic spines.
The effects of the primary cultured hippocampal neurons 18 days on the synapse growth and dendritic spines in the primary cultured hippocampal neurons were observed by BDNF. The plasmids were used to transfect GFP or RFP to mark the dendritic spines of the primary hippocampal neurons. The co localization of tau egg white and microtubules was observed by cell immunofluorescence chemistry. The synapses were measured by synapses. The changes of synapse growth after BDNF treatment were measured, and Westernblot was used to detect the changes of tau protein and its phosphorylation. The changes in morphological synaptic plasticity of neurons and the role of tau protein were determined after BDNF treatment of hippocampal neurons.
The third part is the observation of Tau protein phosphorylation and cell distribution by BDNF.
RA differentiated human neuroblastoma SH-SY5Y and 18 days of primary cultured hippocampal neurons were used as models. After BDNF treatment, the subcellular distribution of tau protein was observed by cell immunofluorescence chemistry. Leica software was used to measure the synaptic growth of SH-SY5Y cells. Westernblot was used to detect the changes in the expression of tau protein, and tau eggs were determined by Westernblot. The relationship between the distribution of white subcellular cells and the synaptic growth of BDNF treated cells.
Result:
Part 1 abnormal morphological changes of dendritic spines caused by TMT
TMT treated the primary cultured hippocampal neurons 24h for 14 days in vitro, and the viability of the cells was significantly decreased by CCK-8. After the addition of BDNF and TMT, the viability of the cells was not significantly increased by CCK-8. The primary cultured hippocampal neurons were transfected to the GFP plasmid at 7 days in vitro and cultured to 20 days, TMT and / or BDNF treated the fixed cells after 24h, and the confocal microscope found TMT. After the treatment, the abnormal circle of the dendritic spines increased after BDNF treatment. The abnormal circular increase of the dendritic spines was reduced and the co stimulation of.BDNF and LiCl could also make the dendritic spines similar to the TMT treatment. The.Westerbnlot experimental results showed that BDNF treatment could be used at the same time in the primary culture. The hippocampal neurons phosphorylate Akt and ERK., but lithium alone does not seem to affect the phosphorylation of Akt and ERK. When lithium and BDNF simultaneously act, the phosphorylation of ERK induced by BDNF does not affect the phosphorylation of ERK, but lithium inhibits the abnormal increase of the dendrite dendrites induced by BDNF induced Akt phosphorylation.TMT and BDNF and LiCl. The cross-talk balance between T is damaged.
The second part of BDNF regulates synapses and dendritic spines through tau protein.
BDNF treated hippocampal neurons 24h and Tau protein expression in 14 days in vitro, and the expression of Tau protein increased significantly. The phosphorylation status of Ser262 loci was decreased after BDNF stimulation. Cell immunofluorescence chemical experiments also demonstrated that the co localization of tau protein and microtubule protein after BDNF treatment enhanced the expression of tau protein and the tree after.BDNF treatment. The density of spinous spines increased consistently. The density of dendritic spines in hippocampal neurons of the hippocampal neurons decreased significantly after 7 days in vitro culture, and the density of dendritic spines was not increased by 24h BDNF in the hippocampal neurons which were downregulated by shRNA for the 21 day after 7 days in vitro culture.
The third part of BDNF regulates the phosphorylation and subcellular distribution of tau protein.
By immunocytochemical methods, we found that tau protein forms a sphere in undifferentiated SH-SY5Y cells with a lack of neurite protuberance. On the contrary, tau protein is distributed in the neurite protuberance and the cell in the SH-SY5Y cells of 5 days of differentiation induced by retinoic acid. Through Western blot detection, we found that the treatment of retinoic acid is also Increase the level of total tau protein and decrease the expression of tau protein Ser262 phosphorylation level.Tau protein expression and the downregulation of tau protein ser262 phosphorylation level and neural cell protuberance length (related factors are r=0.94 and r=-0.98). When the original E18 hippocampal neurons were treated with microtubule depolymerization agent nocodazole, new neuron protuberance was lost. Loss of tau protein transfer to the cell body. This process of distant protrusion can be reversed to some extent by BDNF.
research conclusion
Based on the above findings, we draw the following conclusions: the abnormal increase of dendritic spines in neurons after TMT treatment in cultured hippocampal neurons may be the neurotoxic expression of TMT, the potential.TMT treatment for the protection of TMT dendritic spines and the neuron dendrite spines produced by the combination of BDNF and LiCl. Abnormal enlargement may be associated with the disruption of the cross-talk balance between ERK and Akt..BDNF can regulate the expression of tau protein in the primary hippocampal neurons. This regulation has a dose dependence and aging dependence. Transfection of the primary cultured hippocampal neurons by plasmid and down regulation of the expression of tau protein by plasmid and BDNF stimulation of the growth of dendritic spines in the neuron. Inhibition, suggesting that tau protein may be involved in BDNF signaling pathways in the growth of synapses and dendritic spines. Further experiments suggest that the role of BDNF in regulating the plasticity of dendritic spines may be achieved by regulating the expression of tau protein and thus affecting the stability of the tau protein, the phosphorylation level of the tau protein Ser262 site, the total TA. The expression of u protein and the changes in the subcellular distribution of tau protein are significantly related to the growth of synapses in the nerve cells. The increase of the expression of tau protein and the dephosphorylation of the Ser262 site may be beneficial to the growth of neural synapses. This experiment provides a new evidence for the neurotoxicity of TMT, especially on the damage of the hippocampal deity dendritic spines. It is revealed that BDNF can play a neuroprotective role by regulating the synapses and dendritic spines through tau protein.
【學位授予單位】:第三軍醫(yī)大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:R114

【共引文獻】

相關期刊論文 前10條

1 王海紅;張琳;董為人;劉忠英;張磊;李妍;;Tau蛋白過度表達促進細胞重新進入細胞周期[J];解剖學研究;2011年04期

2 韋建華;葛憲民;;職業(yè)性急性三甲基氯化錫中毒診斷的研究進展[J];廣西醫(yī)學;2008年12期

3 吳磊;吳文;曾慶;趙一瑾;楊建明;;腦卒中后抑郁患者前扣帶回、海馬灰質體積磁共振成像研究[J];第三軍醫(yī)大學學報;2013年23期

4 邵奕嘉;陳莉智;羅利;郭開華;徐杰;;金雀異黃酮對岡田酸誘導大鼠血小板Tau蛋白過度磷酸化的保護作用及機制[J];解剖學研究;2014年01期

5 張靜;陶濤;王云花;唐靖;古妙寧;秦再生;;異丙酚重復鎮(zhèn)靜對大鼠空間學習記憶能力及其海馬齒狀回新生神經(jīng)元的影響[J];第三軍醫(yī)大學學報;2014年11期

6 秦啟忠;王冬梅;;游泳訓練對三甲基氯化錫致記憶障礙模型小鼠學習記憶的影響[J];環(huán)境衛(wèi)生學雜志;2014年04期

7 唐萬英;柯齊斌;余相地;朱賢林;;異丙酚聯(lián)合氯胺酮麻醉對PCNL患者炎癥介質TNF-α的影響[J];重慶醫(yī)學;2013年34期

8 任博;孫法威;張作鳳;張宇新;;丹參酮ⅡA對帕金森病模型小鼠多巴胺能神經(jīng)元的保護作用及其機制[J];吉林大學學報(醫(yī)學版);2014年05期

9 張英;張述林;任旺;蔡述蘭;蒲勤;何華鋒;凌淋;吳路宇;鐘宵宇;;聚多巴胺-納米金修飾玻碳電極檢測蘆丁[J];化學研究與應用;2013年09期

10 劉振中;馮華強;周政華;潘池梅;;三甲基氯化錫致中毒大鼠血清、腎臟和肝臟過氧化損傷研究[J];川北醫(yī)學院學報;2013年05期

相關博士學位論文 前10條

1 劉慧剛;天然植物有效成份茶多酚和大蒜素拮抗三丁基錫毒性作用效果的研究及機制的探討[D];浙江大學;2007年

2 周東浩;血清BDNF水平及BDNF單核苷酸多態(tài)性與2型糖尿病的相關性研究[D];河北醫(yī)科大學;2010年

3 葛睿;DBDCT初步毒代動力學、神經(jīng)毒性作用及其機制研究[D];山西醫(yī)科大學;2013年

4 李夏春;人全長Tau蛋白過度表達對線粒體分裂融合動態(tài)及細胞退變的影響[D];華中科技大學;2013年

5 孫瑾;白藜蘆醇甙對缺氧缺血性腦損傷新生大鼠ERK通路的影響及其改善學習記憶能力的機制研究[D];大連醫(yī)科大學;2012年

6 譚龍;藍莓提取物改善阿爾茨海默病認知功能障礙的實驗研究[D];天津醫(yī)科大學;2013年

7 張登文;雌激素對可興奮性細胞K_(ATP)通道的調(diào)節(jié)及意義[D];華中科技大學;2013年

8 石慧;青光眼神經(jīng)節(jié)細胞退行性病變相關研究[D];華中科技大學;2013年

9 蔣俊;在hTau小鼠及I型糖尿病小鼠中激活EphB2受體降低tau磷酸化的機制研究[D];華中科技大學;2013年

10 柴高尚;下調(diào)pp32恢復p300/CBP組蛋白乙酰化轉移酶活性改善學習記憶障礙[D];華中科技大學;2013年

相關碩士學位論文 前10條

1 武昕;三甲基氯化錫的吸收、分布、排泄和二甲基氯化錫的轉化實驗研究[D];山西醫(yī)科大學;2011年

2 楊子;三甲基氯化錫中毒致大鼠中樞神經(jīng)系統(tǒng)損傷機制的研究[D];山西醫(yī)科大學;2011年

3 秦啟忠;突觸相關蛋白GAP-43及SYP在TMT致小鼠學習記憶功能障礙中的作用研究[D];重慶醫(yī)科大學;2011年

4 李攀;BDNF及其受體在癲癇后認知功能損傷大鼠海馬中的表達變化[D];河北醫(yī)科大學;2006年

5 陳曉慧;大鼠BDNF基因真核表達及其產(chǎn)物對BMSCs定向誘導分化研究[D];沈陽農(nóng)業(yè)大學;2007年

6 李超;運動訓練對發(fā)育期大鼠反復驚厥性腦損傷的干預研究及機制探討[D];蘇州大學;2009年

7 劉振中;三甲基氯化錫中毒氯化鉀的治療作用及對腎氫鉀ATP酶的表達影響[D];山西醫(yī)科大學;2009年

8 李菲;淫羊藿苷改善D-半乳糖誘導的大鼠學習記憶減退[D];遵義醫(yī)學院;2009年

9 睢罡;三甲基氯化錫的蓄積毒性及亞慢性毒性實驗研究[D];山西醫(yī)科大學;2010年

10 王雯;鋅對鉛暴露小鼠學習記憶及海馬中BDNF表達的影響[D];鄭州大學;2012年



本文編號:2138516

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/yixuelunwen/yufangyixuelunwen/2138516.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶d0616***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com