微間隙焊縫磁光成像識別模型研究
[Abstract]:Laser welding technology has the advantages of large laser power, small spot diameter, good beam quality, small heat affected area and large depth width ratio. It can realize the connection between different kinds of materials and excellent welding quality. In the process of laser welding, it is the key to ensure the accurate alignment of the weld center by controlling the laser beam in real time. The light spot diameter of the beam is small (generally less than 200 m), which is sensitive to the size of the weld gap, and requires that the weld gap be as small as possible. The traditional structure optical vision method uses the abrupt characteristics of the structure light across the weld position to realize the weld recognition, but can not identify the weld less than the 0.10mm gap. There are a lot of smoke in the actual industrial welding site. With the influence of the interference of splash and plasma, the ordinary camera can not clearly capture the accurate information of the weld pool and the micro gap weld position, and there is a severe heat transfer effect in the process of laser welding. The welding process parameters and the assembly of the workpiece and the fixed precision are very high, and the small change can lead to serious welding defects. As a result, it is a prerequisite for accurate control of the laser beam to make it always positive and tracking weld is the prerequisite for ensuring the quality of laser welding. This paper compares the advantages and disadvantages of the existing welding seam recognition and tracking methods. Combined with the actual industrial demand, the paper focuses on the study of the laser welding micro gap (less than 0.20mm) weld recognition technology of magneto optic imaging weld. Light welding with equal thickness, no slope, close butt, undistinguishable micro gap weld, magneto-optical imaging sensor based on Faraday magneto-optical effect principle to obtain magnetic and optical images of weld, and to design and build a laser welded stainless steel close butt weld magneto-optical imaging test flat (second chapter), to study the micro gap weld before laser welding. The characteristics and mechanism of magneto-optical imaging can be used to detect the position of the micro gap weld. It lays the foundation for the seam recognition and tracking in the follow-up laser welding process and ensures the quality of the laser welding. First, the welding parts are placed on the servo worktable, and the magnetic generator is placed under the weld, and the excitation voltage is changed around the weld line by adjusting the excitation voltage of the magnetic field generator. According to the Faraday electromagnetic induction effect and the magnetic field intensity of the induction magnetic field, the flow is affected when the eddy current exists in the weld gap on the flow path, and the eddy will distort at the weld position, and the distorted eddy current will produce the distorted eddy current magnetic field, resulting in the distribution of the vertical magnetic field at this position. Change. The change of eddy magnetic field change into corresponding light intensity change through magneto-optical sensor, real-time imaging of weld seam, the correlation between magneto optic imaging characteristics of micro gap weld and weld position. The results show that the excitation voltage, the distance between magneto optic sensor and welding part, welding speed, weld gap size and so on, and the micro gap weld magnetism The change of optical imaging is more sensitive. Secondly, the characteristics of the magneto-optical image of the micro gap weld (gray feature, gray gradient feature, color space feature and texture feature) are used to explore the regularity between the features and the position of the micro gap weld. The characteristics of the gray degree and gray gradient distribution of the magneto optic images of the micro gap weld are analyzed, and the global threshold and edge are used to get the edge of the weld. The edge operator can extract the contour of the weld transition zone and recognize its central position as the position coordinates of the weld center, but the selection of the threshold is not universal. When the magnetic imaging test parameters of the micro gap weld are changed, many repeated tests are needed to select the appropriate threshold. Using the color space features of the weld magneto-optical image, the color space of RGB and HSV is empty. The weld position coordinates are extracted after calculating the gray distribution characteristics of each color component, and the precision of the weld position measurement accuracy is higher than that of the gray map. Finally, the characteristics of the magneto-optical image sequence of the micro gap weld are analyzed, and each pixel is determined by the time domain change and correlation in the image sequence. The application of optical flow method and gradient vector flow model to the recognition of magneto optical image in micro gap weld is studied. In addition, the recognition model of weld position is constructed by artificial neural network, particle filter and Calman filtering algorithm. Finally, the recognition, tracking and prediction of micro gap weld seam can be realized, and the welding is ensured. Quality. Through this series of research work, the main achievements are obtained as follows: (1) the study of the intrinsic relationship between the weld magneto-optical imaging and the actual conditions of the weld and other factors. For a specific magnetic and optical sensor, the main factor affecting the magneto-optical imaging of the micro gap welds is the Faraday magneto-optical effect, and the related factors include the excitation electricity. Pressure, the distance (lift off degree), weld shape and welding speed of the excitation coil and the weldment. The test shows that the magnetic induction intensity around the weld changes with the size of the excitation voltage changed for the same micro gap weld, and the magnetic induction intensity at the weld position is at the symmetry center of the magnetic field (N pole and S pole) on both sides. The transition zone of the weld transition zone moves up and down with the change of the excitation voltage, but the offset of the magneto optic weld position obtained under two different magnetic field strength is constant, that is, the offset can be ignored in a specific magnetic field intensity environment and does not affect the actual weld recognition and tracking. Speed, the measurement value of the weld position of the magneto optic imaging is basically constant, that is, the welding speed is only influenced by the penetration of the workpiece and the number of the image collection frames, and there is no influence on the detection of the position of the micro gap weld. The more clearer the image is. The closer the distance between the magneto-optical sensor and the weldment is, the closer the distance between the magneto-optical sensor and the weldment is, the smaller the weld position transition region is, the more clear the image of the weld area is. (2) the extraction and analysis of the characteristics of the magneto-optical image of the micro gap weld. The characteristics of the micro gap welding seam magneto optical image include the gray feature and the grayscale gradient special. Signs, texture features and image sequence characteristics. The weld is in the middle of two pieces of parent material, and the weld position is scanned vertically. There is a significant difference in the gray distribution of the left and right sides of the weld. The gray distribution at the weld position can be used to detect the position of the weld center. The gray gradient distribution of all the magneto optical images of the weld is scanned. Curve, the line corresponding to the maximum value of grayscale gradient is used as the upper and lower edge coordinates of the weld transition zone, and the center coordinates of the upper and lower edges of the weld transition zone are calculated as the position coordinates of the weld. Three subimages of the same size are extracted in the weld area of the image and the base material on the base of the weld, and the sub images are calculated. The texture features (including: average brightness, standard deviation, smoothness, three moment, consistency, entropy 1, energy, correlation, entropy 2, inverse moment, etc.), use the difference of the texture features to divide the weld and the base area. (3) the detection of the weld position of the micro gap weld magneto optical imaging. The continuous image sequence of the micro gap weld is collected, and the overlap time is overlapped. According to the time domain characteristics and correlation of image sequence, the corresponding pixel points at the peak of the U component in the optical flow field are extracted as the weld position.H-S (Horn, Schunck) method for welding seam recognition. Most of the weld position is in accordance with the actual value of the weld position, because the magnetic and optical image of the weld is noisy. The welding seam extraction method of the optical flow method has a large fluctuation in several parts. In engineering practice, according to the engineering experience, a threshold value is set to remove the fluctuating value as a rough error. Meanwhile, the application of the gradient vector flow field in the segmentation of the magneto-optical image in the micro gap weld is analyzed, and the weld seam in the region of interest is used. The edge is regarded as an uninterrupted curve with energy. Under the control point energy control, the active contour is deformed. The active contour is expanded to the weld target area under the joint action of the control point, external force and image force, and the weld position detection is finally realized. (4) the establishment of the recognition model of the micro gap weld position. Based on the BP neural network, based on the Elman neural network and the Calman filter to predict the weld position model, a prediction model for the weld position of the feedforward neural network is designed. The weld position at the present time is estimated by the difference between the weld position and the weld position at the first time. The weld position of the BP neural network and the Elman network is compared. The results show that the prediction ability of the BP neural network is stronger than that of the Elman neural network, and it can predict the weld position effectively, and the measurement accuracy is better than that of the Elman network. The Kalman filter is used to track and predict the micro gap weld, and the optimal estimation of the system state is obtained on the premise of the known weld position measurement information. Finally, the optimal prediction and estimation of the weld position are realized. After Kalman filter, the noise interference is greatly suppressed and the tracking accuracy is effectively improved.
【學(xué)位授予單位】:廣東工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TG441.7;TP391.41
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 羅津如;近年日本的焊縫自動檢驗動向[J];無損探傷;2001年01期
2 郭旭英;淺談焊縫符號國家標(biāo)準(zhǔn)在設(shè)計文件中的正確標(biāo)注[J];航天標(biāo)準(zhǔn)化;2004年03期
3 王乃成;關(guān)于焊縫表示法兩個國家標(biāo)準(zhǔn)的介紹與分析[J];航天標(biāo)準(zhǔn)化;2005年03期
4 董自強;趙紅艷;王燕;;鋼結(jié)構(gòu)產(chǎn)品檢驗中簡易焊縫尺的制作及使用[J];新技術(shù)新工藝;2011年10期
5 蔡娟;趙長生;李永平;;一種焊縫致密性快速檢驗方法[J];起重運輸機械;2013年08期
6 郝世海;王彥君;熊登保;;鈦焊縫表面氧化對其機械性能的影響[J];焊接;1983年01期
7 蕭前;關(guān)于焊縫系數(shù)的幾點看法[J];石油化工設(shè)備;1987年04期
8 孫景榮;;鋁焊縫常見缺陷及返修[J];焊接技術(shù);1989年05期
9 任蘭雄;;焊縫結(jié)晶偏析對射線底片的影響[J];物理測試;1990年01期
10 劉邦宣;;如何提高焊縫返修合格率[J];焊接技術(shù);1990年05期
相關(guān)會議論文 前10條
1 常青;朱紅亮;李洪剛;白福清;蔣旭偉;;龍城大橋鋼結(jié)構(gòu)焊縫無損檢測方法的研究及應(yīng)用[A];全國城市公路學(xué)會第十八屆學(xué)術(shù)年會論文集[C];2009年
2 馬海濤;王來;趙杰;韓雙起;叢繼功;李衛(wèi)東;劉民;佟金杰;;汽油加氫裝置反應(yīng)器出口管線焊縫開裂原因分析[A];2007年全國失效分析學(xué)術(shù)會議論文集[C];2007年
3 李安營;張國順;王秀京;;耳座焊縫的超聲波探傷[A];2002年晉冀魯豫鄂蒙川滬云貴甘十一省市區(qū)機械工程學(xué)會學(xué)術(shù)年會論文集(河南分冊)[C];2002年
4 陳永祥;瞿才淵;;大型焊接齒輪焊縫的超聲波探傷方法[A];2009海峽兩岸機械科技論壇論文集[C];2009年
5 王峰;;滲透檢驗時對焊縫表面缺陷滲透能力的分析[A];2006年度海洋工程學(xué)術(shù)會議論文集[C];2006年
6 陳永祥;瞿才淵;;大型焊接齒輪焊縫的超聲波探傷方法[A];晉冀魯豫鄂蒙川云貴甘滬湘渝十三省區(qū)市機械工程學(xué)會2009年學(xué)術(shù)年會論文集(河南、貴州、重慶分冊)[C];2009年
7 吳佑明;范崇顯;楊世柏;;超高溫服役的奧氏體耐熱鋼焊縫失效分析[A];2003年11省區(qū)市機械工程學(xué)會學(xué)術(shù)會議論文集[C];2003年
8 孫周明;張連華;陳善忠;李旭;;提速車焊接轉(zhuǎn)向架焊縫TIG重熔工藝的研究[A];江蘇省機械工程學(xué)會第六次會員代表大會論文集[C];2002年
9 何偉;;鋼管螺旋焊縫表面缺陷性質(zhì)分析[A];2007四川省理化檢驗、無損檢測學(xué)術(shù)交流年會論文集[C];2007年
10 趙征;;鋁合金薄板長直焊縫的自動跟蹤系統(tǒng)[A];第十六次全國焊接學(xué)術(shù)會議論文摘要集[C];2011年
相關(guān)重要報紙文章 前3條
1 湖南工學(xué)院 蔣冬青 湖南韶峰水泥集團(tuán)有限公司 胡榮;MPS3750B型立磨安裝時的焊接要領(lǐng)[N];中國建材報;2007年
2 岳華;高清潔管道質(zhì)量“要訣”[N];中國石化報;2010年
3 石建芬 趙鳳 盧鵬;鋼管生產(chǎn)“穿斗篷”“戴面罩”[N];中國石化報;2011年
相關(guān)博士學(xué)位論文 前10條
1 王敏;鈦合金T-型結(jié)構(gòu)單面焊背面雙側(cè)成形焊接新技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2011年
2 甄任賀;微間隙焊縫磁光成像機理與位置識別研究[D];廣東工業(yè)大學(xué);2016年
3 陳余泉;磁光傳感神經(jīng)網(wǎng)絡(luò)卡爾曼濾波融合的微間隙焊縫識別算法研究[D];廣東工業(yè)大學(xué);2016年
4 莫玲;微間隙焊縫磁光成像識別模型研究[D];廣東工業(yè)大學(xué);2016年
5 朱強;CLAM鋼TIG焊接接頭性能及其在液態(tài)鋰鉛中腐蝕行為研究[D];江蘇大學(xué);2011年
6 李菊;鈦合金低應(yīng)力無變形焊接過程機理研究[D];北京工業(yè)大學(xué);2004年
7 陳俐;航空鈦合金激光焊接全熔透穩(wěn)定性及其焊接物理冶金研究[D];華中科技大學(xué);2005年
8 姚遠(yuǎn);幾種Fe-C系汽車材料大功率CO_2激光深熔焊接工藝研究[D];吉林大學(xué);2006年
9 沈長斌;攪拌摩擦與緩蝕劑聯(lián)合作用下鋁合金焊縫的室溫電化學(xué)性能的研究[D];大連交通大學(xué);2012年
10 王立偉;基于視覺信息的鋼板連續(xù)生產(chǎn)線激光焊接關(guān)鍵技術(shù)的研究[D];河北工業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 李寧寧;激光視覺V型焊縫圖像識別技術(shù)研究[D];河北聯(lián)合大學(xué);2014年
2 魏愛民;高氮奧氏體不銹鋼光纖激光焊接工藝試驗研究[D];南京理工大學(xué);2015年
3 陳熙引;基于雙目視覺的機器人焊縫識別及軌跡規(guī)劃研究[D];華南理工大學(xué);2015年
4 孫立人;AZ31B鎂合金CO_2激光焊接接頭組織性能分析[D];內(nèi)蒙古工業(yè)大學(xué);2015年
5 洪浩洋;鈦合金A-TIG焊接工藝的應(yīng)用研究[D];沈陽理工大學(xué);2015年
6 宋慶軍;大厚度TC4ELI鈦合金EBW質(zhì)量控制及球殼變形預(yù)測[D];哈爾濱工業(yè)大學(xué);2015年
7 郝超超;燃?xì)夤艿篮缚p定位及機器人通訊系統(tǒng)研究[D];華北理工大學(xué);2015年
8 郭崇;不同焊接工況對激光焊接接頭組織影響的研究[D];上海工程技術(shù)大學(xué);2015年
9 王彥杰;焊接質(zhì)量的計算機檢測評價系統(tǒng)的設(shè)計與實現(xiàn)[D];電子科技大學(xué);2014年
10 孫碩;高強鋼激光—電弧復(fù)合焊焊縫成型的預(yù)測研究[D];長春理工大學(xué);2014年
,本文編號:2155907
本文鏈接:http://www.lk138.cn/shoufeilunwen/xxkjbs/2155907.html