高功率全光纖激光器光纖耦合關(guān)鍵技術(shù)研究
[Abstract]:The key technologies of high power all fiber laser are: semiconductor pump, double clad fiber, fiber coupling, fiber Bragg grating and terminal output. Among them, optical fiber coupling technology is one of the core technologies of laser. The aim is to effectively coupling the pump light or signal light to double clad fiber. There are two main kinds of optical fiber coupling technology: cone fiber beam end coupling technology and side fiber coupling technology. However, most of the optical fiber couplers used in high power conditions need to be imported abroad. Therefore, the development of domestic high power fiber devices and high power rate fiber laser based on domestic devices for Chinese optical fiber laser technology is developed. The main research contents and results in this paper are as follows: 1, the bending fiber and conical fiber are analyzed by the beam propagation method. The mode field distribution characteristics and beam transmission characteristics of the hot diffused core fiber are presented, and a 100 watt fiber mode field matching device is developed with the heat expansion core technology. First, the anti bending characteristics of the large mode field area fiber are studied and the optical field distortion caused by the optical fiber bending is analyzed. The results show that the higher the mode order of the fiber is, the more sensitive to the bending and the fiber bending. The larger the radius, the smaller the refractive index difference, the larger the core diameter, the more serious the distortion. Secondly, the mode field distribution and the low loss taper condition of the conical fiber are analyzed. The results show that the high transmission efficiency can be obtained by satisfying the adiabatic taper condition for the single mode fiber, and the main factors affecting the transmission efficiency of the multimode fiber are the taper ratio; finally, the factors that affect the transmission efficiency are the last. The distribution characteristics of the mode field of the hot expanding core fiber are studied. The theoretical simulation and experimental results show that the mode field diameter of the large mode field area fiber increases faster than the single mode fiber. In addition, the analysis results of the transmission characteristics of the beam in the thermal diffuser fiber show that even the diameter of the different optical fiber field is realized. The transmission loss of the optical fiber mode field matcher still exists. In the experiment, the 6/125 mu m single mode fiber and the 15/130 mu m field area fiber are used to develop a 100 watts mode field matching device. The optical efficiency is 74%, the power is more than 100W, and the performance is better than the same specification in the market. Finally, the hot expanding core technology It can also be used in the preparation of.2 for fiber couplers. Based on the technology of thermal expansion, a method of transition fiber is proposed, which aims at the high power bundle of core ratio quasi single mode fiber power beam. The power closing of high power single-mode fiber laser module is solved, and a kilowatt level N x 1 type pump beam splitter and a signal beam splitter are developed. The theoretical and experimental study of the N * 1 pump fiber beam splitter is carried out. Based on the Vytran GPX series optical fiber processing platform, the tapered fiber bundle quartz casing method is used to make 3 x 1,7 x 1,19 x 1 and 61 x 1 four high power pumping fiber bundles. Secondly, the theoretical and experimental Study on the N x 1 single mode signal light fiber energy beam splitter is carried out. The mode field distribution and optical transmission characteristics of the 7 x 1 single mode signal optical fiber energy beam splitter are analyzed. The effect of space transient on the transmission efficiency is analyzed. The 7 x 1 type of signal beam splitter is prepared by the transition fiber method based on the thermal expansion technology, and the laser output.3 of the 7 600W single mode laser is obtained, and the independent development of the laser output.3 is obtained. The high power (N+1) x 1 side pump coupler and the self developed side pump optical coupler have built the side multipoint pumped all fiber structure main oscillating power amplifier. First, the taper profile side pump coupler was theoretically studied. In the experiment, the (2+1) x 1 conical side profile was developed by the graphite filament heating method. The coupling efficiency of the pump coupler is 94%, the single arm can withstand the power of 200W pump. Secondly, the angle grinding and throwing side weld pump coupler is theoretically analyzed and simulated. In the experiment, a (1+1) x 1 angle grinding side pump coupler is developed by CO2 laser welding, and the coupling efficiency of the coupler is developed. Up to 97%, the signal light insertion loss is less than 2%, can withstand the maximum 140W pump power. Finally, the optical power distribution of the fiber amplifier under the side multi point pump coupling mode is numerically simulated, and the performance of the single coupler and the influence of the coupling device distribution mode on the efficiency of the fiber amplifier are analyzed by the side distribution pump coupling mode.4, Based on the main oscillator power amplification structure, a self developed N x 1 type pump beam splitter is used to build a kilowatt class Yb double cladding fiber amplifier. The thermal effect of the laser and the factors affecting the output beam quality of the laser are analyzed. Finally, the stable 1.02k W base mode continuous excitation output and the better beam quality M2=1.07 are obtained. The laser prototype is used for metal cutting. In addition, the side multipoint pump and Yb double cladding fiber main oscillating power amplifier are built by the self developed angle grinding and polishing side pump optical coupler. In the experiment, 8 cascaded (1+1) x 1 side pump optical couplers are used to pump the magnified fiber, and the power of 303W is finally obtained. Output, laser amplifier, optical to optical conversion efficiency of 57%.
【學(xué)位授予單位】:北京工業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TN248
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊青,俞本立,甄勝來,孫志培,吳海濱;光纖激光器的發(fā)展現(xiàn)狀[J];光電子技術(shù)與信息;2002年05期
2 朱萬彬,潘玉寨,楊慶鑫,王立軍;光纖激光器的發(fā)展[J];光機(jī)電信息;2002年04期
3 曉晨;2002年光纖激光器研究與應(yīng)用最新進(jìn)展研討會[J];激光與光電子學(xué)進(jìn)展;2002年08期
4 譚中偉,傅永軍,劉艷,寧提綱,裴麗,簡水生;光纖激光器研究和進(jìn)展[J];現(xiàn)代有線傳輸;2002年01期
5 譚中偉,劉艷,傅永軍,寧提綱,裴麗,簡水生;光纖激光器的混沌現(xiàn)象分析[J];中國激光;2003年04期
6 ;光纖激光器[J];光機(jī)電信息;2003年06期
7 宋曉舒;光纖激光器在空軍中的應(yīng)用[J];光機(jī)電信息;2003年11期
8 張德龍;具有潛在工業(yè)應(yīng)用前景的光纖激光器[J];光機(jī)電信息;2004年03期
9 劉美紅;共摻驅(qū)動2μm光纖激光器[J];激光與光電子學(xué)進(jìn)展;2004年11期
10 陳曉燕;;光纖激光器的發(fā)展與應(yīng)用[J];電子元器件應(yīng)用;2004年11期
相關(guān)會議論文 前10條
1 吳文華;冉洋;熊松松;陳鑫;;光纖激光器的醫(yī)療應(yīng)用研究[A];2009年先進(jìn)光學(xué)技術(shù)及其應(yīng)用研討會論文集(上冊)[C];2009年
2 陳曉燕;;光纖激光器的發(fā)展與應(yīng)用[A];中國電子學(xué)會第十三屆電子元件學(xué)術(shù)年會論文集[C];2004年
3 曲宙;李秋實;曲偉;趙崇光;;淺析高功率光纖激光器的應(yīng)用[A];科技創(chuàng)新與節(jié)能減排——吉林省第五屆科學(xué)技術(shù)學(xué)術(shù)年會論文集(上冊)[C];2008年
4 閆大鵬;李成;李立波;劉曉旭;;大功率光纖激光器的產(chǎn)業(yè)化國產(chǎn)化解決方案[A];科技引領(lǐng)產(chǎn)業(yè)、支撐跨越發(fā)展——第六屆湖北科技論壇論文集萃[C];2011年
5 劉俊剛;羅君;歐代永;;光纖激光器的發(fā)展動態(tài)和應(yīng)用前景[A];全國第十二次光纖通信暨第十三屆集成光學(xué)學(xué)術(shù)會議論文集[C];2005年
6 王志華;;光纖激光器應(yīng)用綜述[A];上海市激光學(xué)會2005年學(xué)術(shù)年會論文集[C];2005年
7 侯靜;肖瑞;陳子倫;張斌;;3路光纖激光器陣列相干合成輸出[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
8 劉艷格;董孝義;袁樹忠;開桂云;劉波;付圣貴;王志;;全光纖激光器與放大器研究(特邀)[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
9 季恒;楊四剛;尹飛飛;謝世鐘;;一種基于等效相移的新型雙波長光纖激光器[A];全國第十三次光纖通信暨第十四屆集成光學(xué)學(xué)術(shù)會議論文集[C];2007年
10 劉雪明;;光克爾效應(yīng)的能量自穩(wěn)定理論及在光纖激光器的應(yīng)用[A];全國第十三次光纖通信暨第十四屆集成光學(xué)學(xué)術(shù)會議論文集[C];2007年
相關(guān)重要報紙文章 前10條
1 戴勁松;具有國際先進(jìn)水平的光纖激光器問世[N];大眾科技報;2007年
2 記者 涂亞卓 通訊員 廖巧玲 實習(xí)生 余笑寒;高性能光纖激光器開發(fā)成功[N];湖北日報;2008年
3 戴勁松;我國自主研發(fā)高性能光纖激光器打破國際壟斷格局[N];大眾科技報;2008年
4 本報記者 胡Z,
本文編號:2155766
本文鏈接:http://www.lk138.cn/shoufeilunwen/xxkjbs/2155766.html