頻域內(nèi)基于權(quán)重系數(shù)的木材圖像增強(qiáng)及識(shí)別
[Abstract]:In the timber industry, the most commonly used method of wood identification is visual observation, but it is more accurate to identify wood by computer. In the process of image acquisition, because of the limited factors of environment and acquisition equipment, the image collected by people is not ideal, so the texture information of extracted wood will be lost. This will lead to errors in the recognition of wood images using images. Based on the existing image enhancement algorithms, a wood image enhancement algorithm based on weight coefficient is proposed, and the performance of wavelet transform in low high frequency, high and low frequency and high frequency bands is analyzed. Thus the obfuscation part of the image is eliminated and the image quality is improved. The main contents of this paper are as follows: 1. This paper focuses on five traditional image enhancement algorithms: histogram equalization algorithm, histogram specification algorithm, low-pass filtering algorithm, high-pass filtering algorithm and wavelet transform algorithm. 2. On the basis of existing image enhancement algorithms, a wood image enhancement algorithm based on weight coefficient is proposed. This method is mainly used for directional filtering of obfuscation backups in images, that is to say, the whole image is divided into four different bands: LL,LH,HL and HH. The LL subbands are normalized. The similarity module is obtained by calculating the weight coefficient, and the aliasing detection is carried out by combining the adaptive filtering module, and the local variance method is used to detect the LH,HL and HH subbands. Finally, it uses directional adaptive wavelet shrinkage to eliminate confusion, and accomplishes the obfuscation elimination and restoration image by inverse wavelet transform. The wood image enhancement algorithm based on weight coefficient is compared with histogram equalization algorithm, histogram specification algorithm, low-pass filter algorithm, high-pass filtering algorithm and so on. The experimental results are analyzed subjectively and objectively. 4. The image enhancement algorithm based on weight coefficient is applied to wood image recognition. Elm and elm bark are used as the recognition samples. The wood image enhancement algorithm based on weight coefficient and the traditional image enhancement algorithm are used to preprocess the elm and elm bark images, and the BP neural network is used to identify the images, and the recognition results are analyzed and compared.
【學(xué)位授予單位】:內(nèi)蒙古農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 江華麗;王平;;神經(jīng)網(wǎng)絡(luò)和小波變換融合算法的去噪研究[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2016年05期
2 段益群;曾輝;卓輝;;小波分解和重構(gòu)算法在數(shù)字圖像上的應(yīng)用[J];機(jī)械工程與自動(dòng)化;2016年03期
3 肖化超;周詮;張建華;;遙感衛(wèi)星在軌機(jī)場(chǎng)變化檢測(cè)方法[J];測(cè)繪通報(bào);2015年01期
4 多化豫;高峰;李福勝;魏漢夫;張欣宏;;基于圖像處理的木片與樹皮的新識(shí)別參數(shù)研究[J];西北林學(xué)院學(xué)報(bào);2015年01期
5 朱佳;汪杭軍;;基于Graph Cuts的木材掃描電鏡圖像特征提取方法[J];林業(yè)科學(xué);2014年04期
6 陳莉;;基于小波變換的圖像增強(qiáng)算法[J];陜西理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2014年01期
7 孫書冬;甘雪菲;霍麗平;周旭;;基于Visual Basic的木材識(shí)別系統(tǒng)[J];木材工業(yè);2013年05期
8 孫亮;;計(jì)算機(jī)智能化圖像識(shí)別技術(shù)的理論性突破[J];數(shù)字技術(shù)與應(yīng)用;2013年06期
9 李觀石;劉波;陸藩藩;宋法奇;;基于MMS街景的導(dǎo)航數(shù)據(jù)采集方法研究[J];現(xiàn)代測(cè)繪;2013年01期
10 扈佃海;呂緒良;文劉強(qiáng);;一種改進(jìn)的直方圖均衡化圖像增強(qiáng)方法[J];光電技術(shù)應(yīng)用;2012年03期
相關(guān)碩士學(xué)位論文 前4條
1 吳禹權(quán);數(shù)據(jù)融合技術(shù)在汽車識(shí)別中的應(yīng)用研究[D];華南理工大學(xué);2012年
2 周凌翱;改進(jìn)BP神經(jīng)網(wǎng)絡(luò)在模式識(shí)別中的應(yīng)用及研究[D];南京理工大學(xué);2010年
3 須岳林;基于BP神經(jīng)網(wǎng)絡(luò)的印刷體字符識(shí)別系統(tǒng)的研究[D];南京航空航天大學(xué);2006年
4 方彩婷;基于BP神經(jīng)網(wǎng)絡(luò)的圖像識(shí)別與跟蹤研究[D];西安電子科技大學(xué);2006年
,本文編號(hào):2328754
本文鏈接:http://www.lk138.cn/shoufeilunwen/xixikjs/2328754.html