面向3D-HEVC深度圖編碼的快速優(yōu)化算法研究
[Abstract]:With the rapid development of multimedia communication technology and various video terminal processing capabilities, 3D video has become more and more popular in life. The previous generation of the H.264-based multi-view video coding standard does not meet the high-efficiency compression of the current increasing amount of 3D video data. Therefore, the Joint Collaborative Team on 3D Video Coding Extension Development (JCT-3V) has developed a new-generation multi-view video coding standard, 3D-High Efficiency Video Coding. Although the 3D-HEVC has higher coding efficiency, it has a high computational complexity and severely limits the practical application of 3D video. Therefore, how to reduce the computational complexity of the 3D-HEVC on the premise of ensuring the quality of the 3D video is a hot topic in the current video technology field. At present, the general 3D video format is the multi-view video Plus Depth (MVD) of the texture video, in which the depth map plays an important role in the virtual viewpoint synthesis, but also introduces a large computational complexity. In this paper, the 3D-HEVC depth map is coded, the depth map is deeply analyzed, and a series of fast optimization algorithms are proposed to save the computational complexity on the premise of keeping the coding performance. The main work of this paper is as follows: 1. A low-complexity depth-map intra-frame prediction algorithm based on depth classification is proposed. In this algorithm, the 3D-HEVC intra-prediction mode is divided into three classes _ smoothing class, direction angle class and depth class according to the depth map feature. The method comprises the following steps of: firstly, carrying out feature extraction on a depth prediction block by adopting a HOG characteristic, and secondly, performing mode judgment on the extracted feature by using an SVM training device, and performing RD-Cost calculation on all modes in the type of the depth block according to the judgment result to obtain an optimal prediction mode. The experimental results show that, compared with the original 3D-HEVC, the average time of the algorithm is shortened by 34. 85%, and the BD-Rate is only reduced by 0.14%. The original 3D-HEVC divides the CU by a recursive method and consumes a large amount of encoding time. In this paper, a method for quickly terminating a CU recursive partition is presented in this paper. First, the sum of the absolute value of the variance of the current code CU and the diagonal pixel difference is calculated and compared by the threshold method, it is determined whether the division of the CU is required to be terminated in advance. The experimental results of this algorithm show that, compared with the original 3D-HEVC, the mean time of the algorithm is reduced by 9.73%, and the BD-Rate only increases by 0. 02%. 3, and finally, this paper is optimized for the SDC coding. It is found that the choice of the SDC coding is closely related to the smoothness of the current prediction unit PU, and if the PU is relatively smooth, the possibility of selecting the SDC coding is high. Therefore, after a full search list is obtained, the sum of the absolute values of the current PU outer ring pixel difference is calculated, and the threshold value comparison is performed to determine whether the non-SDC encoding is skipped to reduce the computational complexity. The experimental results show that the algorithm can reduce the coding time of 10.64%, and only result in an increase of 0. 16% BD-Rate. In addition, the three algorithms are combined to optimize the intra-frame prediction process of the depth map. The experimental results show that compared with the original 3D-HEVC, the coding time can be reduced by 43. 09%, and the BD-Rate only increases by 1.06%. In this paper, a series of optimization algorithms are proposed around the 3D-HEVC depth map coding, and the computational complexity is effectively reduced on the premise of maintaining the coding efficiency of the 3D-HEVC. The research results of this paper are of great significance and value to the application of 3D-HEVC.
【學位授予單位】:華僑大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN919.81
【相似文獻】
相關(guān)期刊論文 前10條
1 楊敬安;由針圖重建深度圖[J];機器人;1987年03期
2 左一帆;安平;張兆楊;;基于圖割的高質(zhì)量深度圖獲取方法[J];電視技術(shù);2011年15期
3 張艷;安平;張秋聞;王奎;張兆楊;;恰可察覺深度差異模型的深度圖優(yōu)化方法[J];光電子.激光;2012年07期
4 左宇鵬;;基于深度圖壓縮的邊界自適應(yīng)上采樣方案[J];計算機與現(xiàn)代化;2014年05期
5 楊超;安平;何宛文;王健鑫;張兆楊;;一種用于深度圖編碼的虛擬視失真估計模型[J];光電子.激光;2014年07期
6 溫宇強,李德華;多視角深度圖融合方法綜述[J];計算機與數(shù)字工程;2003年04期
7 葉長明;蔣建國;詹曙;S.Ando;;不同姿態(tài)人臉深度圖識別的研究[J];電子測量與儀器學報;2011年10期
8 左一帆;安平;馬然;沈禮權(quán);張兆楊;;深度圖時域一致性增強[J];光電子.激光;2014年01期
9 朱波;蔣剛毅;張云;郁梅;;面向虛擬視點圖像繪制的深度圖編碼算法[J];光電子.激光;2010年05期
10 周娟;李勇平;黃躍峰;;基于強度圖和深度圖的多模態(tài)人臉識別[J];計算機工程與應(yīng)用;2012年25期
相關(guān)會議論文 前3條
1 陳東;楊生鵬;莊嚴;王偉;;基于視覺信息的三維激光點云渲染與深度圖構(gòu)建[A];第二十九屆中國控制會議論文集[C];2010年
2 劉偉鋒;張卓;王延江;;基于光線衰減的深度獲取方法[A];中國自動化學會控制理論專業(yè)委員會B卷[C];2011年
3 張帥;付宏杰;;基于Kinect的多點觸控系統(tǒng)研究與實現(xiàn)[A];第六屆全國信號和智能信息處理與應(yīng)用學術(shù)會議論文集[C];2012年
相關(guān)博士學位論文 前10條
1 李賀建;三維視頻中基于FPGA的實時深度估計研究與應(yīng)用[D];上海大學;2015年
2 馬祥;提高三維視頻深度編碼性能的技術(shù)研究[D];西安電子科技大學;2015年
3 葛川;三維視頻的高效壓縮及資源分配算法研究[D];山東大學;2015年
4 葉昕辰;面向3DTV的深度計算重建[D];天津大學;2015年
5 王來花;基于深度的虛擬視點繪制及其失真研究[D];天津大學;2015年
6 郭莉琳;基于3D-HEVC的三維視頻編碼快速算法研究[D];浙江大學;2017年
7 向森;多視點深度圖采集與質(zhì)量評估方法研究[D];華中科技大學;2016年
8 鄧慧萍;3D視頻的深度圖優(yōu)化與深度編碼方法研究[D];華中科技大學;2013年
9 高凱;立體視頻深度圖提取及深度序列編碼技術(shù)研究[D];吉林大學;2013年
10 羅雷;基于深度圖繪制的三維視頻編碼技術(shù)研究[D];浙江大學;2013年
相關(guān)碩士學位論文 前10條
1 李海坤;基于彩色和深度的前景分割研究[D];山東大學;2015年
2 張岳歡;3D視頻編碼中深度信息優(yōu)化及場景背景編碼技術(shù)研究[D];哈爾濱工業(yè)大學;2015年
3 曹廣昊;立體視頻系統(tǒng)中深度傳播算法的研究[D];山東大學;2015年
4 丁焱;基于深度圖的虛擬視點繪制中空洞填補技術(shù)研究[D];哈爾濱工業(yè)大學;2015年
5 馬姝穎;基于視點合成的深度圖編碼技術(shù)研究[D];電子科技大學;2015年
6 王旭;面向繪制質(zhì)量的深度圖壓縮感知研究[D];上海大學;2015年
7 卞玲艷;基于深度圖的2D轉(zhuǎn)3D視頻算法的研究[D];電子科技大學;2015年
8 王亞峰;3D-HEVC深度圖預(yù)處理與誤碼掩蓋技術(shù)研究[D];西安電子科技大學;2014年
9 白樹斌;基于RGB-D圖像的深度圖增強問題研究[D];青島大學;2015年
10 王玉峰;基于多視點的三維場景的低延遲遠程繪制算法研究[D];浙江工商大學;2015年
,本文編號:2320950
本文鏈接:http://www.lk138.cn/shoufeilunwen/xixikjs/2320950.html