基于盲源分離的車載語音增強(qiáng)算法研究
[Abstract]:As a convenient, fast and effective way of communication, speech plays a very important role in people's daily life. Along with the progress of social science and technology and the rapid development of artificial intelligence, the voice signal gradually becomes an important way of human-machine interaction. It is more convenient, efficient and safe than the traditional man-machine interactive mode, so it is widely used in industrial control and medical assistance. Security and security, smart home and other aspects. However, in the actual application scene, the voice signal is inevitably disturbed by surrounding environmental noise, and then the voice quality is influenced, and the normal person-machine interaction function can not be completed. Therefore, speech enhancement plays an important role in suppressing noise components and improving the quality of speech. Aiming at this particular application scene of vehicle-mounted environment, the noise signal has low frequency distribution, the prior knowledge is not easy to obtain, and the mixing condition of the voice signal is complicated and the like, so that many voice enhancement algorithms do not apply to the vehicle-mounted environment very well. Therefore, based on the analysis of vehicle-mounted noise and vehicle-mounted acoustic scene, this paper establishes the convolution mixture model of noise signal and speech signal, and researches the validity and feasibility of blind source separation (BSS) technology in vehicle-mounted environment. so as to improve the quality and the intelligibility of the noisy speech signal under the vehicle-mounted environment. In this paper, the following work is carried out: (1) on-board acoustic scene analysis modeling and noise estimation algorithm research. According to the inherent characteristics of vehicle-mounted environment, the source of vehicle-mounted noise and the propagation path of the driver's voice signal in the vehicle are analyzed, and the convolution mixture model of the noise signal and the voice signal in the vehicle is established. Since most speech enhancement algorithms require an estimate of noise as a priori knowledge of noise cancellation, the accuracy of the noise estimation will directly affect the performance of these speech enhancement algorithms. On the basis of summarizing some common speech processing theories, this paper studies the existing commonly used noise estimation algorithms, including the speech endpoint detection noise estimation algorithm and the minimum control recursive average noise estimation algorithm. (2) Speech quality evaluation and speech enhancement algorithm research. The main objective evaluation criteria of speech signal quality are summarized in this paper, and the advantages and disadvantages of these evaluation standards are analyzed. At the same time, we construct a small vocabulary speech recognition engine based on Hidden Markov Model (HMM) based on Hidden Markov Model (HMM) and integrate the speech recognition rate into the evaluation system without reference source speech quality. For the research of speech enhancement algorithm, the paper firstly analyzes the two classical speech enhancement algorithms of spectral subtraction and Wiener filtering, and gives their noise elimination results for vehicle-mounted noisy speech signal; secondly, aiming at the deficiency of some traditional speech enhancement algorithms, This paper presents an improved speech enhancement algorithm for small wave threshold functions, which can effectively suppress wideband noise and improve speech quality. Finally, the basic theoretical framework and implementation principle of Independent Component Analysis (ICA) are described. In this paper, we focus on the process of using complex value ICA based on negative entropy in the frequency domain blind deconvolution to realize the speech enhancement. The ICA speech enhancement process not only can better fit the convolution mixing model, but also can make up the deficiency of the existing speech enhancement algorithm in the vehicle-mounted environment. (3) Research on vehicle-mounted speech enhancement algorithm based on convolution ICA. Based on the convolution mixing characteristics of speech signal and vehicle-mounted noise signal and their non-Gaussian distribution in frequency domain, the speech enhancement of vehicle-mounted noisy speech signal using convolution ICA based on negative entropy is proposed, and the enhancement process is optimized. In this paper, an on-board noisy speech signal corpus was constructed under three acoustic scenes of environment, indoor environment and real vehicle environment, and the speech noise was eliminated by convolution ICA based on negative entropy. The experimental results show that the recognition rate of the speech signal after the convolution ICA is improved by 18. 33%, 30% and 27. 5% respectively, which shows the validity and robustness of the convolution ICA in the vehicle-mounted acoustic scene. In the end, the speech noise elimination effect of blind deconvolution ICA in frequency domain is studied and explained by the influence of frame length and frame shift size of speech signal. (4) Research and implementation of speech enhancement system under complex environment. In this paper, based on the studied noise estimation algorithm and speech enhancement algorithm, a part of the algorithm is selected to combine with the speech media control logic, and the speech enhancement system under a complex environment is realized with C ++ under the Windows platform. The system has the functions of voice waveform display, frequency spectrum display, selective speech enhancement, voice play preservation and the like. The test results show that the system not only has better speech enhancement performance, but also has better reliability and robustness.
【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN912.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 胡光銳,虞曉;基于二階前向結(jié)構(gòu)和信息最大理論的語音增強(qiáng)算法[J];上海交通大學(xué)學(xué)報(bào);2000年07期
2 姚峰英,張敏;用于語音增強(qiáng)的高頻信噪比度量[J];聲學(xué)學(xué)報(bào);2002年05期
3 彭煊,劉金福,王炳錫;基于獨(dú)立分量分析的語音增強(qiáng)[J];信號(hào)處理;2002年05期
4 王金明,張雄偉;一種基于自適應(yīng)模糊濾波的語音增強(qiáng)方法[J];解放軍理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年01期
5 楊匯軍,鄭海英,王立紅;語音增強(qiáng)方法的研究[J];遼寧工學(xué)院學(xué)報(bào);2003年05期
6 徐爽,韓芳芳,鄭德忠;基于閾值的小波域語音增強(qiáng)新算法[J];傳感技術(shù)學(xué)報(bào);2004年01期
7 孫新德;一種改進(jìn)的語音增強(qiáng)方法及實(shí)現(xiàn)[J];鄭州航空工業(yè)管理學(xué)院學(xué)報(bào)(社會(huì)科學(xué)版);2005年04期
8 錢國青;趙鶴鳴;;基于改進(jìn)譜減算法的語音增強(qiáng)新方法[J];計(jì)算機(jī)工程與應(yīng)用;2005年35期
9 王晶,傅豐林,張運(yùn)偉;語音增強(qiáng)算法綜述[J];聲學(xué)與電子工程;2005年01期
10 楊毅;楊宇;余達(dá)太;;語音增強(qiáng)及其消噪能力研究[J];微電子學(xué)與計(jì)算機(jī);2006年07期
相關(guān)會(huì)議論文 前10條
1 陳凱;俞蒙槐;胡上序;付強(qiáng);;語音增強(qiáng)系統(tǒng)性能評(píng)測(cè)方法綜述[A];第四屆全國人機(jī)語音通訊學(xué)術(shù)會(huì)議論文集[C];1996年
2 王建波;林本浩;田春明;劉睿;;語音增強(qiáng)及其相關(guān)技術(shù)研究[A];2009通信理論與技術(shù)新發(fā)展——第十四屆全國青年通信學(xué)術(shù)會(huì)議論文集[C];2009年
3 徐舒;孫洪;;基于融合迭代的語音增強(qiáng)方法[A];第十四屆全國信號(hào)處理學(xué)術(shù)年會(huì)(CCSP-2009)論文集[C];2009年
4 牛剛;任新智;吳國慶;;諧波能量匯集度在語音增強(qiáng)中的應(yīng)用[A];第六屆全國信息獲取與處理學(xué)術(shù)會(huì)議論文集(2)[C];2008年
5 國雁萌;;一種極低信噪比條件下的語音增強(qiáng)方法[A];第六屆全國人機(jī)語音通訊學(xué)術(shù)會(huì)議論文集[C];2001年
6 江峰;李曉東;;適用于抑制非平穩(wěn)背景噪聲的語音增強(qiáng)算法[A];中國聲學(xué)學(xué)會(huì)2003年青年學(xué)術(shù)會(huì)議[CYCA'03]論文集[C];2003年
7 閻兆立;杜利民;;維納后濾波語音增強(qiáng)算法研究[A];中國聲學(xué)學(xué)會(huì)2005年青年學(xué)術(shù)會(huì)議[CYCA'05]論文集[C];2005年
8 劉淑華;胡強(qiáng);覃團(tuán)發(fā);萬海斌;;語音增強(qiáng)算法的研究[A];2005通信理論與技術(shù)新進(jìn)展——第十屆全國青年通信學(xué)術(shù)會(huì)議論文集[C];2005年
9 魏臻;張景達(dá);陸陽;;嵌入式系統(tǒng)中語音增強(qiáng)改進(jìn)算法的研究[A];2007'中國儀器儀表與測(cè)控技術(shù)交流大會(huì)論文集(一)[C];2007年
10 楊威明;;基于閾值的小波變換語音增強(qiáng)方法[A];2007北京地區(qū)高校研究生學(xué)術(shù)交流會(huì)通信與信息技術(shù)會(huì)議論文集(上冊(cè))[C];2008年
相關(guān)博士學(xué)位論文 前10條
1 歐世峰;變換域語音增強(qiáng)算法的研究[D];吉林大學(xué);2008年
2 尹偉;基于模型的語音增強(qiáng)方法及質(zhì)量評(píng)估研究[D];武漢大學(xué);2009年
3 王海艷;基于統(tǒng)計(jì)模型的語音增強(qiáng)算法研究[D];吉林大學(xué);2011年
4 方瑜;語音增強(qiáng)相關(guān)問題研究[D];北京郵電大學(xué);2012年
5 姚峰英;語音增強(qiáng)系統(tǒng)的研究與實(shí)現(xiàn)[D];中國科學(xué)院上海冶金研究所;2001年
6 夏丙寅;面向移動(dòng)通信的單通道語音增強(qiáng)方法研究[D];北京工業(yè)大學(xué);2014年
7 徐勇;基于深層神經(jīng)網(wǎng)絡(luò)的語音增強(qiáng)方法研究[D];中國科學(xué)技術(shù)大學(xué);2015年
8 陶智;低信噪比環(huán)境下語音增強(qiáng)的研究[D];蘇州大學(xué);2011年
9 王娜;基于小波變換與約束方差噪聲譜估計(jì)的語音增強(qiáng)算法研究[D];燕山大學(xué);2011年
10 趙彥平;基于稀疏表示的語音增強(qiáng)方法研究[D];吉林大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 肖佩霖;雙通道語音增強(qiáng)系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];哈爾濱工業(yè)大學(xué);2011年
2 陳成斌;針對(duì)于家居環(huán)境的語音增強(qiáng)系統(tǒng)的研究與開發(fā)[D];華南理工大學(xué);2015年
3 魏有權(quán);基于噪聲估計(jì)的語音增強(qiáng)算法研究[D];昆明理工大學(xué);2015年
4 胡勇;麥克風(fēng)陣列語音增強(qiáng)算法研究[D];電子科技大學(xué);2014年
5 曹后斌;有色背景噪聲環(huán)境下語音增強(qiáng)系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];電子科技大學(xué);2014年
6 馬小惠;陣列語音增強(qiáng)在車載環(huán)境中的應(yīng)用[D];大連理工大學(xué);2015年
7 李達(dá);無線聲學(xué)傳感器網(wǎng)絡(luò)中分布式語音增強(qiáng)方法研究[D];大連理工大學(xué);2015年
8 高珍珍;基于梅爾頻譜域HMM的語音增強(qiáng)方法研究[D];北京工業(yè)大學(xué);2015年
9 宋環(huán)宇;全數(shù)字助聽器語音增強(qiáng)算法研究[D];哈爾濱工業(yè)大學(xué);2014年
10 王永杰;基于麥克風(fēng)陣列的語音增強(qiáng)算法研究[D];西安電子科技大學(xué);2014年
,本文編號(hào):2284152
本文鏈接:http://www.lk138.cn/shoufeilunwen/xixikjs/2284152.html