中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

磁致伸縮扭轉(zhuǎn)波激勵模型與影響因素研究

發(fā)布時間:2018-04-02 02:36

  本文選題:磁致伸縮 切入點:扭轉(zhuǎn)導(dǎo)波 出處:《南昌航空大學》2017年碩士論文


【摘要】:管道作為油氣集輸?shù)闹饕\輸方式,在生產(chǎn)運輸方面占有重要的地位。管道在長期使用以及特殊環(huán)境下所產(chǎn)生的缺陷成為油、氣和石化產(chǎn)業(yè)的主要問題。隨著國家經(jīng)濟迅速發(fā)展,管道應(yīng)用數(shù)量也隨之增加,相應(yīng)的管道在役安全狀況以及使用壽命預(yù)測工作也急需加強,以保證正常生產(chǎn)運轉(zhuǎn)。因此,如何快速、準確的實現(xiàn)對管道在役狀況的檢測,成為當前無損檢測的首要任務(wù)。本論文在國家自然科學基金(51261024,51675258)、國家重點研發(fā)計劃項目(2016YFF0203000)、江西省教育廳科學技術(shù)研究項目(GJJ150699)和廣東省數(shù)字信號與圖像處理技術(shù)重點實驗室開放課題(2014GDDSIPL-01)共同資助下開展研究的,采用磁致伸縮扭轉(zhuǎn)模態(tài)導(dǎo)波傳感器對鐵磁性管道的進行非接觸無損檢測。扭轉(zhuǎn)模態(tài)導(dǎo)波的傳播特性不受管道中液體的存在的影響,并且T)1,0(模態(tài)在所有頻率下是非頻散的。該類型傳感器能夠?qū)崿F(xiàn)單點檢測,且產(chǎn)生的導(dǎo)波傳播距離遠、速度快。然而檢測信號信噪比較低是當今磁致伸縮超聲導(dǎo)波檢測的的主要缺點,因此研究力磁耦合作用下磁致伸縮扭轉(zhuǎn)導(dǎo)波的激勵和其影響因素對于提升導(dǎo)波檢測效率有重大意義。本文從相關(guān)理論出發(fā),仿真計算和實驗研究兩方面相結(jié)合對磁致伸縮扭轉(zhuǎn)模態(tài)導(dǎo)波傳感器展開研究。首先,詳細闡述磁致伸縮導(dǎo)波檢測技術(shù)的相關(guān)基礎(chǔ)理論。介紹了鐵磁性材料的磁致伸縮效應(yīng)基本特征以及對導(dǎo)波檢測系統(tǒng)的換能機理做了詳細描述,然后根據(jù)導(dǎo)波的多模態(tài)性和頻散特性給出了扭轉(zhuǎn)導(dǎo)波的頻散方程。同時結(jié)合文獻給出了針對鐵磁性材料多場耦合的線性模型。其次,介紹了磁致伸縮扭轉(zhuǎn)模態(tài)導(dǎo)波的檢測原理和傳感器結(jié)構(gòu),還包括圓管中扭轉(zhuǎn)波的傳播以及扭轉(zhuǎn)模態(tài)導(dǎo)波的激勵過程控制方程。利用有限元軟件COMSOL建立了扭轉(zhuǎn)模態(tài)導(dǎo)波傳感器激勵端的三維力磁耦合數(shù)值仿真模型,對其進行加載求解,得到管道內(nèi)部的磁場分布情況。在此基礎(chǔ)上,對管道內(nèi)部靠近磁場的某一質(zhì)點進行磁致伸縮力的位移分析,通過質(zhì)點在周向和軸向的振動規(guī)律分析數(shù)值模型激勵出的導(dǎo)波特性,并與鐵磁性材料扭轉(zhuǎn)模態(tài)導(dǎo)波的傳播特性相比較。研究表明,鐵磁性管道在周向偏置磁場作用下,與動態(tài)磁場的合成的方向較為單一,并且磁致伸縮效應(yīng)占據(jù)主導(dǎo)地位。最后根據(jù)仿真結(jié)果確定該激勵模型產(chǎn)生的導(dǎo)波符合鐵磁性材料扭轉(zhuǎn)模態(tài)導(dǎo)波的傳播特性,即以周向振動為主,產(chǎn)生的波沿管道軸向傳播,傳播方向與質(zhì)點振動方向相垂直。說明通過該仿真分析能夠得到由力磁聲多場耦合產(chǎn)生的應(yīng)變,能夠真實反映扭轉(zhuǎn)模態(tài)磁致伸縮導(dǎo)波,為后續(xù)研究激勵導(dǎo)波影響因素以及導(dǎo)波增強研究提供了基礎(chǔ)。再次,對磁致伸縮扭轉(zhuǎn)模態(tài)導(dǎo)波檢測系統(tǒng)搭建了實驗平臺,通過計算激勵出的導(dǎo)波的波速并與理論扭轉(zhuǎn)波的波速作對比,從而確定實驗激勵出的導(dǎo)波模態(tài)為扭轉(zhuǎn)波。針對周向偏置磁場作用下建立的鐵磁性管道激勵扭轉(zhuǎn)波的仿真模型,從激勵信號的電流強度、頻率、周期數(shù)三個方面討論不同影響因素下磁致伸縮激勵傳感器作用區(qū)域內(nèi)質(zhì)點振動位移的變化情況。為了驗證仿真結(jié)果的有效性,對鋼管分別進行了不同影響因素下的檢測實驗,并對實驗采集到的波形進行分析。結(jié)果表明,隨著激勵信號條件的改變,質(zhì)點振動幅值和回波的峰值都產(chǎn)生了一定規(guī)律的變化,可以從中分析選擇最優(yōu)激勵條件,且仿真結(jié)果和實驗結(jié)果的變化規(guī)律相一致,因此該仿真模型可作為磁致伸縮導(dǎo)波激勵檢測方面研究的參考。最后,對磁致伸縮扭轉(zhuǎn)模態(tài)導(dǎo)波激勵傳感器結(jié)構(gòu)進行優(yōu)化,采用交叉線圈式磁致伸縮扭轉(zhuǎn)模態(tài)導(dǎo)波傳感器結(jié)構(gòu)對管道進行超聲檢測。首先介紹了偏置磁場在磁致伸縮導(dǎo)波傳感器中的影響和作用。其次介紹了交叉線圈式激勵傳感器的原理以及構(gòu)造,通過數(shù)值仿真驗證交叉線圈式的磁致伸縮傳感器能夠有效的激勵出扭轉(zhuǎn)波并且證明了管道中合成磁場強度矢量方向?對于質(zhì)點振動幅值是有影響的。結(jié)果表明,在不同材質(zhì)中,總存在一個最佳的?方向使得質(zhì)點振動幅值最好。然后利用交叉線圈式的傳感器結(jié)構(gòu)進行實驗,結(jié)果表明交叉線圈式傳感器激勵能量能用于產(chǎn)生扭轉(zhuǎn)波,并對仿真研究進行了實驗驗證,二者具有良好的一致性。因此,交叉線圈技術(shù)的磁致伸縮傳感器是用于管道檢查的有用且有效的工具,在本文實驗條件下,當動態(tài)磁場強度保持一定時,與環(huán)形線圈磁化鎳帶得到偏置磁場的合成磁場強度矢量方向接近某一最佳方向時,導(dǎo)波幅值最好,有利于提升信噪比和對缺陷的靈敏度。
[Abstract]:As the main mode of transportation pipeline of oil and gas transportation, plays an important role in the production of transport. Pipeline defects generated in the long-term use and special environment become the main problems of oil, gas and petrochemical industry. With the rapid development of national economy, the number of pipeline application increases, the corresponding pipeline in service security situation work and life prediction also needs to be strengthened, in order to ensure the normal operation of production. Therefore, how to quickly, to realize the detection of pipeline in service condition accurately, become the primary task of nondestructive testing. The natural science foundation of the state (5126102451675258), the national key research project (2016YFF0203000), the Education Department of Jiangxi province the science and technology research project (GJJ150699) in Guangdong province and the open project of digital signal and image processing technology key laboratory (2014GDDSIPL-01) research funded under the mining Modal guided wave sensor on the ferromagnetic pipeline for nondestructive detection with magnetostrictive torsion. Propagation characteristics of torsional modes of guided waves is not affected by the influence of the presence of liquid in the pipe, and the T (1,0) mode at all frequencies is nondispersion. This type of sensor can achieve single point detection, and the guided wave propagation distance and speed. However, the detection signal in low SNR is the magnetostrictive ultrasonic guided wave detection of the main faults, so the study of magnetic force coupling for magnetostrictive torsional guided wave excitation and its influencing factors to improve the efficiency of guided wave detection is of great significance. This paper from the relevant theories. Simulation and experimental study of two combination of magnetostrictive torsional mode guided wave sensor is researched. Firstly, elaborated the magnetostrictive guided wave detection technology is introduced. The basic theory of ferromagnetic material The basic characteristics of the magnetostrictive effect of guided wave detection system to the mechanism described in detail, and then according to the guided wave multi-mode and dispersion characteristics are given torsional guided wave dispersion equation. At the same time, combined with the literature given for ferromagnetic material of multi field coupling linear model. Secondly, introduced. Torsion sensor detection principle and structure of the magnetostrictive guided wave modes, including torsional wave propagation in pipe and torsional excitation process control equation of guided wave mode was established. By numerical simulation of torsional modes of magnetic coupling model of three axis force sensor excitation wave end by using finite element software COMSOL, loading and solving the magnetic. The distribution of the internal pipe. Based on the analysis of displacement of a particle inside the pipeline near the magnetic field of the magnetostrictive force, through the analysis of particle vibration law in the circumferential and axial number The value of the incentive model of guided wave characteristics and propagation characteristics of torsional modes of guided waves and the ferromagnetic material is compared. The results show that the ferromagnetic pipeline in the circumferential bias magnetic field, magnetic field and dynamic synthesis direction is single, and the magnetostrictive effect dominates. Finally, according to the simulation results to determine the incentive the model accords with the guided wave propagation characteristics of torsional modes of guided waves in ferromagnetic materials, the circumferential vibration, wave generated along the pipe axial propagation, propagation direction and perpendicular to the direction of particle vibration. Through the simulation analysis of strain can be produced You Li magneto acoustic multi field coupling, can reflect the magnetostrictive torsional mode the telescopic guide wave, guided wave factors and guided wave enhanced research provides a foundation for the further research on incentive. Again, the magnetostrictive torsional mode guided wave detection system to build an experimental platform. Too excited to calculate the velocity of guided wave and torsional wave velocity theory for comparison, to determine the experimental excitation of guided wave modes for torsional wave. The ferromagnetic pipeline for circumferential bias magnetic field established simulation model of torsional wave excitation, the frequency from the current intensity, excitation signal, discuss the changes of different under the influence of the magnetostrictive sensor excitation region particle vibration displacement of three cycle. In order to verify the validity of the simulation results, the pipe experiments were carried out under different factors detection, and the collected waveforms were analyzed. The results show that as the excitation signal conditions change, change of peak particle the amplitude of vibration and echo have certain rules, can be analyzed to select the optimum excitation conditions, consistent variation and simulation results and experimental results, so the imitation It can be used as a model of magnetostrictive guided wave excitation and detection of reference. Finally, the magnetostrictive torsional mode guided wave excitation sensor structure optimization, torsion wave sensor structure by ultrasonic detection of the pipeline mode guided by cross coil magnetostriction. First introduced the influence of guide wave sensor bias magnetic field in magnetostrictive effect and secondly introduces the principle of cross coil excitation and sensor structure, numerical simulation results show that the magnetostrictive sensor cross coil can effectively excite torsional waves and that the synthesis of magnetic field intensity vector direction in the pipeline? Has an impact on the particle vibration amplitude. The results showed that in different materials, there is always a the best direction makes the vibration amplitude? Best. And then use the sensor structure cross coil experiments, results show that cross the line Ring type sensor excitation energy can be used to produce torsion wave, and the simulation is verified by experiments, the two have good consistency. Therefore, the magnetostrictive sensor cross coil technique is a useful and effective tool for pipeline inspection, under this experimental conditions, when the dynamic magnetic field strength constant, close to a an optimal synthesis direction of magnetic field intensity vector direction of the bias magnetic field and magnetization loop nickel belt, guided wave amplitude is best, is conducive to enhancing the SNR and the defect sensitivity.

【學位授予單位】:南昌航空大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP212

【參考文獻】

相關(guān)期刊論文 前10條

1 孫鵬飛;武新軍;從明;;磁致伸縮縱向?qū)Рü艿罊z測數(shù)值建模與分析[J];儀器儀表學報;2015年06期

2 狄彥;帥健;王曉霖;石磊;;油氣管道事故原因分析及分類方法研究[J];中國安全科學學報;2013年07期

3 張蕓;;壓力管道無損檢測技術(shù)及實踐應(yīng)用[J];科技風;2013年12期

4 王悅民;劉勇;沈立華;朱龍翔;;管道中磁致伸縮導(dǎo)波傳播方向控制理論與試驗[J];海軍工程大學學報;2012年06期

5 崔銘偉;曹學文;;腐蝕缺陷對中高強度油氣管道失效壓力的影響[J];石油學報;2012年06期

6 羅自治;張傳濤;楊勇;代向輝;王志祥;陳紅軍;;國外管道失效原因分析及對我國管道管理建議[J];煤氣與熱力;2011年03期

7 朱龍翔;王悅民;李城華;沈立華;;鋼管中基于磁致伸縮效應(yīng)扭轉(zhuǎn)導(dǎo)波激勵的實驗研究[J];中國機械工程;2010年20期

8 黃小美;彭世尼;楊俊杰;王書淼;;國內(nèi)典型城市燃氣管道失效調(diào)查與分析[J];煤氣與熱力;2010年09期

9 蔡桂喜;張恩勇;;海底管道無損檢測技術(shù)及最新進展[J];無損探傷;2009年06期

10 王繼強;;國內(nèi)外油氣管道事故比較分析[J];科技創(chuàng)新導(dǎo)報;2008年28期

相關(guān)博士學位論文 前4條

1 王崢;磁致伸縮直線位移傳感器彈性波機理研究[D];太原理工大學;2011年

2 翁玲;超磁致伸縮振動傳感器的模型與實驗研究[D];河北工業(yè)大學;2008年

3 周浩淼;鐵磁材料非線性磁彈性耦合理論及其在超磁致伸縮智能材料中的應(yīng)用[D];蘭州大學;2007年

4 馮雪;鐵磁材料本構(gòu)關(guān)系的理論和實驗研究[D];清華大學;2002年

相關(guān)碩士學位論文 前5條

1 鄧文;超聲導(dǎo)波在彎曲圓桿中的傳播特性及裂紋檢測應(yīng)用[D];南昌航空大學;2015年

2 程濤;管道裂紋磁致伸縮導(dǎo)波檢測傳感器研制與開發(fā)[D];湖北工業(yè)大學;2012年

3 張嵐;磁致伸縮液位傳感器的設(shè)計及優(yōu)化[D];南京理工大學;2011年

4 薛淼;超磁致伸縮材料在換能器中的應(yīng)用研究[D];內(nèi)蒙古科技大學;2007年

5 柯巖;基于磁致伸縮導(dǎo)波的鋼管無損檢測實驗研究[D];華中科技大學;2006年

,

本文編號:1698434

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/xixikjs/1698434.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fc1f3***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com