嘧菌酯、噻蟲嗪懸浮劑配方篩選與形成機制研究
本文選題:嘧菌酯 + 噻蟲嗪 ; 參考:《中國農(nóng)業(yè)大學(xué)》2016年博士論文
【摘要】:本論文通過利用x射線光電子能譜分析儀、傅里葉紅外線光譜分析儀、掃描電子顯微鏡、Zeta電位儀、差熱分析儀和流變儀等技術(shù)手段對25%嘧菌酯懸浮劑和21%噻蟲嗪懸浮劑進行了細致綜合的研究,為制備性能優(yōu)良的懸浮劑提供了依據(jù),其結(jié)論如下。對分散劑在嘧菌酯和噻蟲嗪顆粒表面的吸附機理進行了研究。在298K、308K和318K的實驗溫度下,分散劑在嘧菌酯和噻蟲嗪顆粒表面的吸附等溫線模型均符合Lamgmuir模型,吸附動力學(xué)模型均高度符合準二級動力學(xué)模型。分散劑在嘧菌酯和噻蟲嗪顆粒表面的熱力學(xué)參數(shù)結(jié)果顯示吸附均可自發(fā)進行,屬于物理吸附,吸附過程均為熵增過程。鈉離子濃度和pH均能影響分散劑在嘧菌酯和噻蟲嗪顆粒表面的吸附。傅里葉紅外光譜分析結(jié)果表明分散劑D-425,2700和2210與嘧菌酯之間、分散劑2700和2210與噻蟲嗪之間均以范德華力為主結(jié)合在原藥顆粒表面。Zeta電位結(jié)果顯示分散劑D-425、2700和2210在嘧菌酯懸浮液中的最佳含量點分別為2.5%,2.0%和3.0%;分散劑2700和2210在噻蟲嗪懸浮液中的最佳含量點均為3.0%。XPS結(jié)果顯示嘧菌酯和噻蟲嗪的C 1s和O 1s總峰在吸附分散劑后含量明顯提高。分散劑在嘧菌酯和噻蟲嗪顆粒表面的吸附層厚度隨著溫度的變化而變化,與吸附等溫線宏觀結(jié)果一致。在制作配方時,分散劑含量為最佳濃度時,吸附層厚度達到最大。熱重數(shù)據(jù)結(jié)果顯示分散劑/嘧菌酯體系在600℃以下為簡單一步分解,分散劑/噻蟲嗪體系在400℃以下為簡單兩步分解。通過FWO法分別對分散劑/嘧菌酯體系和分散劑/噻蟲嗪體系進行熱分解動力學(xué)研究,兩個體系下的分散劑最佳含量均與Zeta和XPS結(jié)果相符,且在常規(guī)分散劑推薦含量2-3%的范圍內(nèi),同一分散劑含量下不同轉(zhuǎn)化率α的擬合公式平行性良好,表明FWO法能在實際應(yīng)用中更好的指導(dǎo)分散劑在懸浮劑中含量的應(yīng)用。分散劑/嘧菌酯和分散劑/噻蟲嗪懸浮液的流變曲線均符合Hershel-Bulkley模型。在最佳分散劑用量時,體系的屈服值τH和黏度具有極小值,隨著分散劑含量的增加,稠度指數(shù)K逐漸增大,流動特性指數(shù)n逐漸減小。分散劑/嘧菌酯和分散劑/噻蟲嗪懸浮液體系的黏度均隨時間有周期性振蕩行為,在分散劑D-425、2700和2210最佳用量時,體系的振蕩振幅較小,比較集中,穩(wěn)定性較好。2700/噻蟲嗪懸浮劑體系,分散劑含量在0-1.5%之間的流變振蕩曲線剪切3min和10min有振幅,而當分散劑含量大于2%時振蕩幅度逐漸減小,高濃度時幾乎沒有。2210/噻蟲嗪懸浮劑體系振蕩振幅較小。在298K、308K和318K下,隨著溫度的升高,分散劑/嘧菌酯和分散劑/噻蟲嗪懸浮液體系的黏度逐漸降低;Hershel-Bulkley模型的三個代表參數(shù)屈服值τH、稠度指數(shù)k和流動特性指數(shù)n均隨溫度和pH的升高而變化;分散劑/嘧菌酯和分散劑/噻蟲嗪懸浮液體系的流變振蕩曲線的振蕩頻率和振幅均隨著實驗溫度的升高發(fā)生了較大變化,溫度越高振蕩振幅越大,振蕩曲線表現(xiàn)雜亂無序。利用精準量化的結(jié)果結(jié)合常規(guī)手段對懸浮劑的配方進行篩選,確定了在25%嘧菌酯懸浮劑中分散劑D-425、2700和2210的最佳用量分別為2.5%、2.0%和3.0%;在研發(fā)21%噻蟲嗪懸浮劑過程中,發(fā)現(xiàn)僅2210能制備合格的懸浮劑,其最佳用量為3.0%。本論文制備的25%嘧菌酯懸浮劑和21%噻蟲嗪懸浮劑理化性能指標良好,達到行業(yè)標準要求。
[Abstract]:By using X ray photoelectron spectroscopy analyzer, Fourier Infrared Spectroscopy Analyzer, scanning electron microscope, Zeta potentiometer, differential thermal analyzer and rheometer, the 25% thiazide suspension and 21% thiazimine suspension are studied in detail, which provides a basis for the preparation of excellent suspension agents. The adsorption mechanism of dispersant on the surface of azimetide and thiazimine particles was studied. At the temperature of 298K, 308K and 318K, the adsorption isotherm model of the dispersants on the surface of pyrazine and thiazimine particles conformed to the Lamgmuir model, and the average height of the adsorption kinetics model was in accordance with the quasi two stage kinetic model. The thermodynamic parameters of the surface of the ester and thiazimine particles show that the adsorption can be carried out spontaneously, which belongs to the physical adsorption, and the adsorption process is the entropy increase process. The concentration of sodium ion and pH can affect the adsorption of dispersants on the surface of pyrazine and thiazimine particles. The Fourier Infrared spectrum analysis indicates that the dispersant D-4252700 and 2210 are with pyrazine. Among the dispersants 2700 and 2210 and thiimazine, the optimal concentration of dispersant D-4252700 and 2210 in the suspension of azimthiazide was 2.5%, 2% and 3%, respectively, with the.Zeta potential on the surface of the particle on the particle surface of the original powder. The optimum content of dispersant 2700 and 2210 in the thiimazine suspension was 3.0%.XPS results. The total peak of C 1s and O 1s of azimetin and thiamazine increased obviously after the adsorption dispersant. The thickness of the adsorbed layer on the surface of the dispersant on the surface of pyrazine and thiazimine was changed with the temperature, which was in accordance with the macroscopical result of the adsorption isotherm. When the formulation was made, the thickness of the dispersant was the best. The thermal weight of the adsorbed layer was maximum. The data showed that the dispersant / pyrazine system was decomposed in a simple step below 600 C, and the dispersant / thiazine system was decomposed in a simple two step below 400 C. The thermal decomposition kinetics of dispersant / azoxpyrazine system and dispersant / thiazimine system were studied by FWO. The optimum content of dispersants under the two individual system were all with the content of the dispersant. The results of XPS are consistent, and in the range of recommended concentration of 2-3% for conventional dispersants, the fitting formula of different conversion rates under the same dispersant content is good, indicating that the FWO method can better guide the application of dispersant in the suspension agent in practical application. The rheological curves of dispersant / azoxpyrazine and dispersant / thiazine suspension are all in character. When the dosage of the best dispersant, the yield value H and viscosity of the system have minimal value. With the increase of the dispersant content, the consistency index K gradually increases and the flow characteristic index n gradually decreases. The viscosity of the dispersant / azoxpyrazine and the dispersant / thiazimine suspension system are all periodically oscillating with time, and dispersing with time. When the best dosage of agent D-4252700 and 2210, the oscillation amplitude of the system is smaller, more concentrated, the stability is better.2700/ thietazine suspension system, the rheological oscillation curve between 0-1.5% and 3min and 10min have amplitude, but when the dispersant content is more than 2%, the oscillation amplitude decreases gradually, and there is almost no.2210/ thiazine when the concentration is high. The oscillation amplitude of the suspension system is smaller. With the increase of temperature, the viscosity of the dispersant / azimetide / dispersant / thiimazine suspension system gradually decreases with the increase of 298K, 308K and 318K; the yield value H of the three representative parameters of the Hershel-Bulkley model, the consistency index K and the number n of the flow characteristics are all changed with the increase of temperature and pH; dispersant / azoxoxy. The oscillating frequency and amplitude of the rheological oscillation curve of the bacteria ester and the dispersant / thiazimine suspension system changed greatly with the increase of the experimental temperature. The higher the temperature, the greater the amplitude of the oscillation and the disorder of the oscillation curve. The formula of the suspension was screened by the result of precise quantification and the conventional means. The 25% azoxazin was determined. The optimum dosage of dispersant D-4252700 and 2210 was 2.5%, 2% and 3%, respectively. In the process of R & D 21% thiazimine suspension, only 2210 was found to be able to prepare qualified suspension agents. The optimum dosage was 3.0%., 25% azoxazin suspension and 21% thiazimine suspending agent had good physical and chemical properties, and reached the industry standard. Requirement.
【學(xué)位授予單位】:中國農(nóng)業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:TQ450.1
【相似文獻】
相關(guān)期刊論文 前10條
1 楊淦;;嘧菌酯仍將持續(xù)升溫[J];農(nóng)藥市場信息;2013年13期
2 吳映璇;林峰;林海丹;邵琳智;焦紅;李荀;;豆類中腈嘧菌酯殘留的高效液相色譜-串聯(lián)質(zhì)譜法測定[J];分析測試學(xué)報;2009年05期
3 王振宇;;先正達擴大美國嘧菌酯產(chǎn)能[J];農(nóng)藥研究與應(yīng)用;2009年05期
4 李海屏;;嘧菌酯及其中間體合成技術(shù)研究進展[J];農(nóng)藥研究與應(yīng)用;2012年06期
5 羅湘仁;徐妍;劉世祿;陶婧;;28%苯甲·嘧菌酯懸浮種衣劑的高效液相色譜分析[J];現(xiàn)代農(nóng)藥;2013年01期
6 晁先明;;深圳朗鈦80%嘧菌酯水分散粒劑配方研制成功[J];山東農(nóng)藥信息;2013年01期
7 ;2013年已有7家農(nóng)藥企業(yè)獲得嘧菌酯原藥登記[J];農(nóng)藥市場信息;2013年12期
8 ;利民化工嘧菌酯懸浮劑量產(chǎn)[J];今日農(nóng)藥;2013年09期
9 馮希杰;馬慧霞;陳長軍;周明國;;嘧菌酯對油菜菌核病菌的抗菌活性及抗菌機制研究[J];農(nóng)藥學(xué)學(xué)報;2009年02期
10 ;嘧菌酯需求大增 競爭加劇價格下行[J];農(nóng)藥市場信息;2011年26期
相關(guān)會議論文 前4條
1 房雅麗;朱小瓊;國立耘;;美澳型核果褐腐菌對啶酰菌胺和嘧菌酯的敏感性[A];中國植物病理學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
2 張舒亞;周明國;李紅霞;張傳清;王建新;;嘧菌酯對稻瘟病菌的生物活性研究[A];2003’華東植物病理學(xué)術(shù)研討會暨江蘇省植物病理學(xué)會第十次會員代表大會論文集[C];2003年
3 侯志廣;王思威;趙曉峰;鄒靜;逯忠斌;袁星;;嘧菌酯在人參植株中的殘留動態(tài)研究[A];十一五農(nóng)業(yè)環(huán)境研究回顧與展望——第四屆全國農(nóng)業(yè)環(huán)境科學(xué)學(xué)術(shù)研討會論文集[C];2011年
4 張舒亞;周明國;李紅霞;;稻梨孢抗嘧菌酯突變體B9-R2的生物學(xué)性狀研究[A];2003’華東植物病理學(xué)術(shù)研討會暨江蘇省植物病理學(xué)會第十次會員代表大會論文集[C];2003年
相關(guān)重要報紙文章 前6條
1 楊丹;深圳朗鈦研制出嘧菌酯80%水分散粒劑配方[N];農(nóng)民日報;2013年
2 水清;嘧菌酯:水稻病害防治潛力藥種[N];江蘇農(nóng)業(yè)科技報;2013年
3 本報記者 王兆勇 通訊員 梁嬌;咪鮮·嘧菌酯攻克稻瘟病[N];農(nóng)資導(dǎo)報;2014年
4 實習(xí)記者 王兆勇;先正達將對MakhteshimAgan供應(yīng)嘧菌酯[N];農(nóng)資導(dǎo)報;2009年
5 星子 雷霆 柴國賢;我省有了自主知識產(chǎn)權(quán)的進出口水果和蔬菜檢測方法[N];青海日報;2007年
6 趙占周;高手教您用農(nóng)藥[N];農(nóng)資導(dǎo)報;2013年
相關(guān)博士學(xué)位論文 前2條
1 梁爽;嘧菌酯對人參生理生化指標及品質(zhì)的影響[D];吉林農(nóng)業(yè)大學(xué);2016年
2 陳維韜;嘧菌酯、噻蟲嗪懸浮劑配方篩選與形成機制研究[D];中國農(nóng)業(yè)大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 劉曉旭;嘧菌酯的水解和光解特性研究[D];吉林農(nóng)業(yè)大學(xué);2013年
2 張春容;嘧菌酯與腐霉利復(fù)配防治蔬菜灰霉病的應(yīng)用研究[D];西南科技大學(xué);2015年
3 楊改鳳;牡丹葉部四種真菌病害化學(xué)防治藥劑篩選[D];河南科技大學(xué);2015年
4 密東林;嘧菌酯對玉米的調(diào)控機理研究[D];吉林農(nóng)業(yè)大學(xué);2015年
5 王亞慧;嘧菌酯對番茄的調(diào)控機理研究[D];吉林農(nóng)業(yè)大學(xué);2015年
6 殷星;嘧菌酯的環(huán)境行為及在水稻上的殘留動態(tài)研究[D];南京農(nóng)業(yè)大學(xué);2014年
7 劉勇敢;基于Suzuki反應(yīng)新型農(nóng)藥嘧菌酯的綠色合成工藝探究[D];東華大學(xué);2016年
8 楊朋;殺菌劑嘧菌酯的合成和工藝優(yōu)化[D];浙江工業(yè)大學(xué);2013年
9 趙鵬;嘧菌酯微囊化及其對靶沉積規(guī)律研究[D];中國農(nóng)業(yè)科學(xué)院;2016年
10 謝惠;嘧菌酯在稻田中的殘留消解及吸附行為研究[D];湖南農(nóng)業(yè)大學(xué);2013年
,本文編號:1780774
本文鏈接:http://www.lk138.cn/shoufeilunwen/nykjbs/1780774.html