黃河三角洲土壤及其紅粘層的地球化學(xué)特征與環(huán)境意義
發(fā)布時(shí)間:2018-04-19 13:45
本文選題:黃河三角洲 + 紅粘層; 參考:《中國(guó)科學(xué)院煙臺(tái)海岸帶研究所》2016年博士論文
【摘要】:黃河三角洲是受到黃河來(lái)水來(lái)沙、尾閭流路變遷、全球氣候變化等自然因素和農(nóng)業(yè)耕種熟化、城鎮(zhèn)化、工業(yè)化等人類(lèi)活動(dòng)交互作用、疊加影響的區(qū)域。目前對(duì)氣候變化、人類(lèi)活動(dòng)和陸海相互作用多重影響下黃河三角洲區(qū)域土壤環(huán)境質(zhì)量、土壤發(fā)生發(fā)育過(guò)程和土壤沉積物物質(zhì)鏈關(guān)系缺乏一個(gè)整體認(rèn)識(shí)。本論文基于黃河三角洲地區(qū)的42個(gè)典型類(lèi)型土壤剖面(182個(gè)土壤樣品)和26個(gè)臨近海域表層沉積物樣品,分析了土壤基本理化性質(zhì)、土壤重金屬元素與稀土元素、有機(jī)氯農(nóng)藥和石油烴等有機(jī)污染物、土壤原狀土和膠體的礦物組成、化學(xué)組成、磁學(xué)性質(zhì)等地球化學(xué)特征、土壤和沉積物放射性鉛同位素和穩(wěn)定性碳、氮同位素,表征了黃河三角洲地區(qū)土壤由陸到海的土壤質(zhì)量特征;探討了無(wú)機(jī)元素和有機(jī)污染物的土壤環(huán)境地球化學(xué)行為及來(lái)源;揭示了黃河三角洲土壤剖面紅粘層的時(shí)空分布、地球化學(xué)特征和陸海相互作用下的環(huán)境意義。這些研究成果可為高強(qiáng)度人類(lèi)經(jīng)濟(jì)活動(dòng)及強(qiáng)烈陸海交互作用下黃河三角洲區(qū)域生物地球化學(xué)循環(huán)與可持續(xù)發(fā)展提供基礎(chǔ)數(shù)據(jù)和科學(xué)依據(jù),具有重要的科學(xué)意義和現(xiàn)實(shí)的指導(dǎo)意義。本研究的主要結(jié)果包括以下幾個(gè)方面:(1)黃河三角洲在灘涂、濕地、棉田、糧田、菜地由海到陸的利用方式和空間過(guò)渡下,土壤鹽分逐漸降低,土壤結(jié)構(gòu)和肥力水平逐漸提高。其中,灘涂土壤結(jié)構(gòu)較差,肥力水平很低,代表了該地區(qū)自然成陸條件下的原始土壤理化性質(zhì)特征。灘涂發(fā)育為濕地后,濕地淹水的環(huán)境及豐富的植被,使得在該利用方式下土壤粘粒、有機(jī)質(zhì)、氮、磷等含量顯著提高。濕地開(kāi)墾為農(nóng)田后,人為改良使得土壤脫鹽脫堿顯著,明顯提高了土壤供氮、供磷強(qiáng)度,但人類(lèi)活動(dòng)加劇了土壤團(tuán)聚體的破壞以及有機(jī)質(zhì)的釋放。(2)黃河三角洲土壤重金屬、有機(jī)氯農(nóng)藥和石油烴的整體含量較低,目前環(huán)境生態(tài)風(fēng)險(xiǎn)不高。土壤重金屬在黃河河岸和三角洲南部區(qū)域含量有升高趨勢(shì);有機(jī)氯農(nóng)藥中相對(duì)活躍組份(γ-HCH和o,p’-DDT)和相對(duì)穩(wěn)定組份(β-HCH和p,p’-DDE)有沿海-內(nèi)陸的兩極分布趨勢(shì)。土壤總石油烴呈現(xiàn)代黃河三角洲內(nèi)部低、外部高的趨勢(shì),靠近孤東油田的區(qū)域土壤中總石油烴含量相對(duì)較高。土壤剖面中鐵氧化物和粘土礦物對(duì)重金屬有顯著富集,土壤粘粒也是表層和剖面土壤中γ-HCH的重要載體,土壤石油烴則主要與土壤發(fā)育程度相關(guān)。黃河泥沙的搬運(yùn)和沉積是多數(shù)污染物的主要來(lái)源,但隨著調(diào)水調(diào)沙、石油開(kāi)采、農(nóng)業(yè)墾殖和海岸工程等人類(lèi)活動(dòng)的日益頻繁,黃河三角洲污染物逐漸受到了當(dāng)?shù)厝藶檫^(guò)程的影響。(3)黃河三角洲土壤剖面中稀土豐度與物源的風(fēng)化程度和成土程度有正相關(guān)趨勢(shì)。土壤剖面不同層次之間稀土分餾情況是同步的,輕稀土相對(duì)重稀土富集,La-Eu曲線較陡,Eu-Ld曲線較平緩,Eu呈較為明顯的負(fù)異常,Ce正異常不明顯。通過(guò)稀土特征參數(shù)可以得出,黃河三角洲各層次土壤的源物質(zhì)在黃河侵蝕、搬運(yùn)、沉積過(guò)程中經(jīng)歷了充分的混勻過(guò)程。(4)黃河三角洲土壤剖面中的典型紅粘層主要分布在1855年之后形成的現(xiàn)代黃河三角洲和1855年之前形成的古代三角洲區(qū)域,在黃河和彌河之間為紅粘層過(guò)渡區(qū),在彌河以東無(wú)紅粘層分布。出現(xiàn)深度較淺的紅粘層沉積相對(duì)較厚。對(duì)典型剖面的137Cs和210Pb定年可得,黃河三角洲剖面紅粘層沉積的年代在1910s~1960s區(qū)間內(nèi),紅粘層多出現(xiàn)于沉積速率發(fā)生較為劇烈變化的層次區(qū)間,與水動(dòng)力變化有關(guān)。在形貌特征上,典型紅粘層平均粒徑為6.69±0.79φ、中值粒徑為11.6±7.3μm、紅度(a*)值為7.5±0.4。(5)黃河三角洲土壤紅粘層粘土礦物和方解石含量都顯著高于其上下黃砂層,而原生礦物如石英和長(zhǎng)石的含量則顯著低于黃砂層。在常量元素組成上,典型紅粘層SiO_2為55.6±3.7%、Al2O3為13.5±1.1%、CaO為8.18±1.03%、Fe2O3為5.49±0.83%、MgO為2.83±0.34%、K2O為2.54±0.83%和Na2O為1.34±0.32%。19種微量元素中,紅粘層只有Zr和Hf含量顯著低于黃砂層,其余微量元素都要顯著高于黃砂層。紅粘層相對(duì)黃砂層具有較高的風(fēng)化程度,典型紅粘層的硅鋁率為6.71±1.06。磁學(xué)性質(zhì)上,紅粘層的磁學(xué)特征參數(shù)數(shù)值χfd%為8.3±1.7%、χarm為362.7±90.0×10-8 m3/kg、χarm/SIRM為67.1±15.1×10-5 m/A、SIRM/χlf為9.6±1.5×103 A/m和χARM/χlf為6.3±1.0,說(shuō)明了紅粘層中較細(xì)的成土性SP/SD顆粒含量較高,對(duì)該層磁性增強(qiáng)貢獻(xiàn)較大。紅粘層和黃砂層土壤膠體間色度和磁學(xué)特征差異較小,但粘土礦物和元素組成略有差異。黃河三角洲土壤紅粘層是源區(qū)溫濕氣候條件下的高風(fēng)化物質(zhì),經(jīng)黃河由上游至下游搬運(yùn)、混合、沉積,在三角洲地區(qū)水動(dòng)力分選而形成。紅粘層與黃砂層物源總體上較為相似,但又存在區(qū)別,主要是由于不同時(shí)期沉積造陸物源不同以及沉積時(shí)海相的影響和成陸之后的成壤過(guò)程導(dǎo)致不同土層間的地球化學(xué)特征差異。(6)黃河三角洲土壤紅粘層重金屬平均含量是黃砂層的約1.5倍,紅粘層中鐵錳結(jié)合易還原態(tài)Pb、Co以及弱酸溶態(tài)Cd比例要高于黃砂層,紅粘層中重金屬的潛在遷移性更強(qiáng)。紅粘層是三角洲底層土壤中重要的有機(jī)碳、有機(jī)氮和無(wú)機(jī)碳庫(kù),紅粘層中累積的無(wú)機(jī)碳可能主要以次生碳酸鹽形式存在,具有固碳的能力。紅粘層出現(xiàn)的深度和厚度結(jié)合黃河尾閭改道時(shí)間可推測(cè)現(xiàn)代三角洲形成期環(huán)境和人類(lèi)活動(dòng)變化。黃河三角洲土壤和沉積物的碳氮穩(wěn)定性同位素分餾特征表明,濱海濕地土壤、菜地土壤、田地(棉田和糧田)土壤、河相沉積物、海灣和深海沉積物是影響區(qū)域碳氮循環(huán)的6組重要介質(zhì),由自然土壤向海洋沉積物過(guò)渡,對(duì)應(yīng)了由源區(qū)較活躍有機(jī)質(zhì)庫(kù)向沉積區(qū)較穩(wěn)定有機(jī)質(zhì)庫(kù)轉(zhuǎn)移的過(guò)程。
[Abstract]:The the Yellow River delta is a region which is affected by human activities such as natural factors such as the flow of water and sediment in the Yellow River, the change of the end of the tail stream, the global climate change and other natural factors such as agricultural cultivation and maturation, urbanization, industrialization and other human activities. At present, the soil environment quality of the the Yellow River Delta region under the multiple effects of climate change, human activity and land sea interaction are affected by soil. This paper, based on 42 typical types of soil profiles (182 soil samples) and 26 adjacent sea surface sediments, analyzed the basic physical and chemical properties of soil, heavy metal elements and rare earth elements, organochlorine pesticides and organic chlorine pesticides in the the Yellow River Delta region. Organic pollutants such as petroleum hydrocarbons, mineral composition of soil and colloids, chemical composition, magnetic properties and other geochemical characteristics, soil and sediment radioactive lead isotopes and stable carbon, nitrogen isotopes, characterizing soil quality characteristics from land to sea in the the Yellow River Delta region, and exploring the soil of inorganic and organic pollutants. The geochemical behavior and source of the soil environment revealed the spatial and temporal distribution of the red sticky layer in the soil profile of the the Yellow River Delta, the geochemical characteristics and the environmental significance of the land sea interaction. These results can be used for the biogeochemical cycle and sustainable development of the the Yellow River Delta region under the high intensity human economic activity and strong land sea interaction. The main results of this study include the following aspects: (1) in the the Yellow River Delta, the soil salinity is gradually reduced and the soil structure and fertility level gradually decreases with the transition from sea to land in the tidal flat, wetland, cotton field, grain field and vegetable land. Among them, the soil structure of the beach is poor and the fertility level is very low, which represents the physical and chemical characteristics of the original soil under natural conditions in the area. After the tidal flat is developed into wetland, the environment of wetland flooding and the rich vegetation make the content of soil clay, organic matter, nitrogen, phosphorus and so on. Artificial improvement made soil desalination and alkali removal significantly, obviously improved soil nitrogen supply and phosphorus supply, but human activities intensified the destruction of soil aggregates and the release of organic matter. (2) the overall content of heavy metals, organochlorine pesticides and petroleum hydrocarbons in the the Yellow River delta is low, and the environmental ecological risk is not high at present. Soil heavy metals are in the the Yellow River river. The relative active components of organic chlorine pesticides (gamma -HCH and O, p '-DDT) and relatively stable components (beta -HCH and P, p' -DDE) have a coastal and inland two polar distribution trend. The total petroleum hydrocarbon in the soil is low in the modern the Yellow River Delta and in the external high, close to the total stone in the regional soil of the Gudong oilfield. The content of oil and hydrocarbon is relatively high. Iron oxides and clay minerals have significant enrichment in soil profiles. Soil clay particles are also important carriers of gamma -HCH in surface and section soils. Soil petroleum hydrocarbons are mainly related to the degree of soil development. The transport and deposition of sediment in the Yellow River are the main source of most of the pollutants, but with water regulation and sediment transfer, Human activities such as oil exploitation, agricultural reclamation and coastal engineering are increasingly frequent, and the pollutants in the the Yellow River delta are gradually affected by local human processes. (3) the abundance of rare earth in the soil profile of the the Yellow River Delta has a positive correlation with the degree of weathering and the degree of soil formation. The light rare-earth is relatively heavy rare earth, the La-Eu curve is steeper, the Eu-Ld curve is relatively gentle, the Eu has a more obvious negative anomaly, and the Ce anomaly is not obvious. Through the rare earth characteristic parameters, the source of soil in the the Yellow River Delta has experienced a full mixing process in the process of erosion, transport and deposition in the Yellow River. (4) the soil of the Yellow River Delta The typical red sticky layers in the section are mainly distributed in the modern the Yellow River delta formed after 1855 and the ancient Delta region formed before 1855, the transition zone between the red sticky layer between the Yellow River and the MI River, the distribution of the red sticky layer in the east of the river and the thicker sedimentary facies of the shallow red sticky layer. The 137Cs and 210Pb dating of the typical sections It is available that the red sticky layer in the the Yellow River delta section is in the 1910s~1960s interval, and the red sticky layer appears in the level interval of more severe changes in the deposition rate, which is related to the hydrodynamic changes. On the morphological features, the average particle size of the typical red sticky layer is 6.69 + 0.79 phi, the median particle size is 11.6 + 7.3 mu m, and the red degree (a*) value is 7.5 + 0.4. (5) (5). The content of clay minerals and calcite in the red clay layer of the delta is significantly higher than that of the upper and lower Yellow sand layers, while the content of primary minerals such as quartz and feldspar is significantly lower than that of the yellow sand layer. In the composition of the constant elements, the typical red sticky layer SiO_2 is 55.6 + 3.7%, Al2O3 is 13.5 + 1.1%, CaO is 8.18 + 1.03%, Fe2O3 is 5.49 + 0.83%, MgO is 2.83 + 0.34%, K2O is 2.54. The content of Zr and Hf in the red sticky layer is significantly lower than that of the yellow sand layer, and the other trace elements are significantly higher than the yellow sand layer. The red sticky layer has a higher weathering degree than the yellow sand layer. The silicon aluminum ratio of the typical red sticky layer is 6.71 + 1.06. magnetics, and the magnetic characteristic parameter value of the red sticky layer is fd% of the value Chi fd% for the red sticky layer. 8.3 + 1.7%, X arm is 362.7 + 90 x 10-8 m3/kg, X arm/SIRM is 67.1 + 15.1 * 10-5 m/A, SIRM/ LF is 9.6 + 1.5 * 103 A/m and X ARM/ x LF is 6.3 + 1. It shows that the thinner clay formation SP/SD particles in the red sticky layer are higher, and have greater contribution to the magnetic enhancement of this layer. The difference of chromaticity and magnetic characteristics between the red and yellow sand layer soil colloids is small. But there is a slight difference in the composition of clay minerals and elements. The red sticky layer of the soil in the the Yellow River delta is a highly weathered material under the warm and wet climate in the source area. It is transported, mixed and deposited from the upstream to the lower reaches of the Yellow River, and formed in the Delta region. The red sticky layer is similar to the yellow sand layer in general, but the difference is mainly due to the difference. (6) the average content of heavy metals in the red sticky layer of the the Yellow River delta is about 1.5 times that of the yellow sand layer, and the ratio of iron and manganese to the reductive Pb, Co and weak acid soluble Cd in the red sticky layer is higher than that in the red sticky layer. The potential mobility of heavy metals in the yellow sand layer is stronger in the red sticky layer. The red sticky layer is an important organic carbon, organic nitrogen and inorganic carbon pool in the bottom soil of the delta. The accumulated inorganic carbon in the red sticky layer may be mainly in the form of secondary carbonate and has the ability to carbon sequestration. The depth and thickness of the red sticky layer can be combined with the time of the the Yellow River tail end of the red sticky layer. The characteristics of carbon and nitrogen isotopic fractionation of soil and sediment in the Yellow River delta indicate that coastal wetland soil, vegetable soil soil, field (cotton field and grain field) soil, river facies sediments, bay and deep sea sediments are 6 important groups affecting regional carbon and nitrogen cycle, from natural soil. The transition from the soil to the marine sediment corresponds to the process of transferring the more active organic matter reservoir to the stable organic matter pool in the source area.
【學(xué)位授予單位】:中國(guó)科學(xué)院煙臺(tái)海岸帶研究所
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:S153;X53
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周倩;章海波;周陽(yáng);李遠(yuǎn);薛勇;付傳城;涂晨;駱永明;;濱海潮灘土壤中微塑料的分離及其表面微觀特征[J];科學(xué)通報(bào);2016年14期
2 鄭順安;薛穎昊;李曉華;段青紅;高尚賓;;山東壽光設(shè)施菜地土壤-農(nóng)產(chǎn)品鄰苯二甲酸酯(PAEs)污染特征調(diào)查[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2016年03期
3 繆雄誼;郝玉培;陽(yáng)蓮錦;葉思源;陳偉海;王s,
本文編號(hào):1773335
本文鏈接:http://www.lk138.cn/shoufeilunwen/nykjbs/1773335.html
最近更新
教材專(zhuān)著