中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

杭州市典型農(nóng)業(yè)和工業(yè)區(qū)氯代POPs的殘留、土氣交換特征及健康風(fēng)險研究

發(fā)布時間:2018-04-06 07:27

  本文選題:有機(jī)氯農(nóng)藥 切入點(diǎn):多氯聯(lián)苯 出處:《浙江大學(xué)》2017年碩士論文


【摘要】:持久性有機(jī)污染物(Persistent organic pollutants,POPs)能夠持久存在于環(huán)境中,并且能夠隨著食物鏈在動物和人體內(nèi)不斷積蓄,具有半揮發(fā)性和高毒性,目前受到全球范圍的廣泛關(guān)注。典型的氯代持久性有機(jī)物包括有機(jī)氯農(nóng)藥六六六(Hexachlorocyclohexanes,HCHs)、滴滴涕(Dichlorodiphenyltrichloroethanes,DDTs)和多氯聯(lián)苯(Polychlorinated biphenyls,PCBs),雖然已被禁用幾十年,但由于它們在我國的歷史產(chǎn)量和使用量十分巨大,至今仍能在各種環(huán)境介質(zhì)中檢出,并且持續(xù)地對生態(tài)系統(tǒng)和人體健康造成危害。因此,研究這類物質(zhì)在環(huán)境中的殘留、歸趨等行為以及評價其對人體的健康風(fēng)險是十分必要的。在本論文的研究中,我們采集了杭州市典型農(nóng)業(yè)和工業(yè)區(qū)的土壤和大氣樣品,分析了其中HCHs、DDTs和PCBs的濃度,并針對具有手性的有機(jī)氯農(nóng)藥α-HCH、o,p'-DDD和o,p'-DDT進(jìn)行了對映體分析,利用異構(gòu)體和對映體選擇性殘留特征闡述了它們的來源及土氣交換行為,解釋了其在空間和季節(jié)上的差異,最后利用美國EPA健康風(fēng)險評價模型對土壤和大氣中的此類物質(zhì)進(jìn)行了暴露風(fēng)險評估。本文得到的主要結(jié)果如下:(1)研究區(qū)域土壤中冬季∑HCHs的濃度大于夏季濃度,農(nóng)業(yè)區(qū)濃度大于工業(yè)區(qū)濃度,具體濃度水平為:冬季農(nóng)業(yè)區(qū)0.224-3.71(均值1.47)ng/g,冬季工業(yè)區(qū)0.228-1.61(均值0.555)ng/g,夏季農(nóng)業(yè)區(qū)0.023-2.36(均值0.615)ng/g,夏季工業(yè)區(qū)0.037-1.58(均值0.301)ng/g;其中β-HCH在大部分土壤樣品中占主導(dǎo)地位。與土壤中濃度時空特征相反,大氣中夏季∑HCHs濃度大于冬季濃度,工業(yè)區(qū)濃度大于農(nóng)業(yè)區(qū)濃度,具體濃度水平為:冬季農(nóng)業(yè)區(qū)20.1-42.0(均值27.9)pg/m~3,冬季工業(yè)區(qū)26.8-77.1(均值42.7)pg/m~3,夏季農(nóng)業(yè)區(qū)32.4-73.0(均值40.8)pg/m~3,夏季工業(yè)區(qū)9.04-62.2(均值45.6)pg/m~3;其中α-HCH在大部分大氣樣品中占主導(dǎo)地位。來源分析結(jié)果表明,研究區(qū)域土壤和大氣中HCHs的殘留主要來源于歷史上工業(yè)六六六的使用。對于手性α-HCH,大部分土壤中(-)-α-HCH會優(yōu)先降解,而大氣中冬季(+)-α-HCH優(yōu)先降解,夏季則(-)-α-HCH優(yōu)先降解。逸度分?jǐn)?shù)表明,目前研究區(qū)域HCHs處于從土壤向大氣揮發(fā)的狀態(tài),土壤仍是大氣中HCHs的二次來源,且冬季的農(nóng)業(yè)區(qū)HCHs揮發(fā)趨勢較強(qiáng)。對土壤和大氣中HCHs通過多種途後暴露于人體產(chǎn)生的健康風(fēng)險進(jìn)行評估,HCHs對人體不具有非致癌風(fēng)險,致癌風(fēng)險也非常低。(2)研究區(qū)域土壤中冬季∑DDTs的濃度大于夏季濃度,農(nóng)業(yè)區(qū)濃度大于工業(yè)區(qū)濃度,具體濃度水平為:冬季農(nóng)業(yè)區(qū)0.721-1594(均值96.5)ng/g,冬季工業(yè)區(qū)0.608-79.8(均值12.3)ng/g,夏季農(nóng)業(yè)區(qū)0.312-938(均值67.5)ng/g,夏季工業(yè)區(qū)0.572-125(均值12.1)ng/g;其中p,p'-DDE和p,p'-DDT在大多數(shù)土壤樣品中占主導(dǎo)地位。與土壤中濃度時空特征相反,大氣中ΣDDTs的濃度夏季大于冬季,沒有顯著的空間差異性,具體濃度水平為:冬季農(nóng)業(yè)區(qū)37.1-363(均值52.1)pg/m~3,冬季工業(yè)區(qū)48.5-141(均值42.5)pg/m~3,夏季農(nóng)業(yè)區(qū)90.7-325(均值137)pg/m~3,夏季工業(yè)區(qū)33.5-401(均值162)pg/m~3;其中p,p'-DDE在大部分大氣樣品中占主導(dǎo)地位。來源分析結(jié)果表明,大多數(shù)土壤中DDTs的殘留來源于歷史上工業(yè)DDTs的使用,少部分土壤可能受到三氯殺螨醇或DDTs再次使用導(dǎo)致的新來源的影響;而大氣中大部分樣品可能受到三氯殺蹣醇等新來源的影響。對于手性o,p'-DDD和o,p'-DDT,所有土壤和大氣樣品中的o,p'-DDT和o,p'-DDD都是非外消旋的。對于o,p'-DDT,土壤和大氣中都是(+)-對映體會優(yōu)先降解;對于o,p'-DDD,土壤中(+)-對映體會優(yōu)先降解,大氣中則是(-)-對映體會優(yōu)先降解。逸度分?jǐn)?shù)表明,部分樣品中DDTs處于揮發(fā)狀態(tài),部分樣品中DDTs處于平衡狀態(tài),其余樣品中DDTs處于沉降狀態(tài)。且冬季的農(nóng)業(yè)區(qū)DDTs的逸度分?jǐn)?shù)較高。對土壤和大氣中DDTs通過多種途徑暴露于人體產(chǎn)生的健康風(fēng)險進(jìn)行評估,DDTs對人體不具有非致癌風(fēng)險,致癌風(fēng)險非常低。(3)研究區(qū)域土壤中∑PCBs的濃度不具有顯著空間差異性,冬季濃度大于夏季濃度,具體濃度水平為:冬季農(nóng)業(yè)區(qū)68.6-1828(均值524)pg/g,冬季工業(yè)區(qū)104-1838(均值404)pg/g,夏季農(nóng)業(yè)區(qū)47.4-1327(均值323)pg/g,夏季工業(yè)區(qū)25.2-804(均值307)pg/g;在大多數(shù)土壤樣品中5Cl-和6Cl-PCBs占主導(dǎo)地位。大氣中∑PCBs的濃度不具有顯著空間差異性,冬季濃度大于夏季濃度,具體濃度水平為:冬季農(nóng)業(yè)區(qū)224-480(均值345)pg/m~3,冬季工業(yè)區(qū)233-537(均值326)pg/m~3,夏季農(nóng)業(yè)區(qū)135-553(均值353)pg/m~3,夏季工業(yè)區(qū)39.6-253(均值133)pg/m~3;在大多數(shù)大氣樣品中7Cl-PCBs占主導(dǎo)地位。來源分析結(jié)果表明,土壤中的PCBs來源于工業(yè)品Aroclor1254,而大氣可能受到多種工業(yè)品Aroclor的混合污染。逸度分?jǐn)?shù)表明,大部分懫樣點(diǎn)PCBs處于平衡狀態(tài)或從大氣向土壤沉降,其逸度分?jǐn)?shù)的大小與PCBs的分子量大小有關(guān)。冬季的逸度分?jǐn)?shù)高于夏季,空間變化特征與PCBs的分子量大小有關(guān)。健康風(fēng)險評價表明,個別土壤樣品中PCBs對兒童表現(xiàn)出了非致癌風(fēng)險,其余大部分土壤和大氣樣品中PCBs對人體不具有非致癌風(fēng)險。一部分土壤和大氣樣品中PCBs會對人體產(chǎn)生低的致癌性風(fēng)險,其余樣品對人體產(chǎn)生非常低的致癌性風(fēng)險。
[Abstract]:Persistent organic pollutants (Persistent organic, pollutants, POPs) can persist in the environment, and can with the food chain in the animal and human body time savings, with semi volatile and highly toxic, currently widespread concern worldwide. Typical chlorinated organic compounds including persistent organochlorine pesticides (Hexachlorocyclohexanes, HCHs 666 (Dichlorodiphenyltrichloroethanes, DDTs), DDT and polychlorinated biphenyls (Polychlorinated) biphenyls, PCBs), although has been disabled for decades, but because they are popular in China and the use of history is huge, can still be detected in various environmental media, and continuously to the ecosystem and human health hazard. Therefore, study on residue of such substances in the environment, and fate of behavior and evaluate the risk to human health is very necessary in the research of this thesis. , we collected soil and air samples in Hangzhou City, a typical agricultural and industrial areas, analyzes the HCHs, concentration of DDTs and PCBs, and the organochlorine pesticides with chiral alpha -HCH, O, p'-DDD and O, p'-DDT for the enantiomeric analysis, the isomers and enantiomers of residual features describes the sources and their rustic exchange behavior, explains its spatial and seasonal differences, finally using the EPA health risk assessment model of exposure risk assessment of such substances in soil and air. The main results are as follows: (1) concentration of regional soil in winter than in summer HCHs the concentration of agricultural area is greater than the concentration of industrial zone concentration, the specific concentration level: Winter agricultural area 0.224-3.71 (mean 1.47 ng/g), winter Industrial Zone 0.228-1.61 (mean 0.555) ng/g, the summer agricultural area 0.023-2.36 (mean 0.615 ng/g), summer industry 0.037-1.58 (mean 0.301) ng/g; the beta -HCH is dominant in most soil samples. In contrast with the concentration in the soil spatial characteristics, the concentration of HCHs in the atmosphere in winter than summer sigma concentration, industrial zone is greater than the concentration of agricultural area concentration, the specific concentration level: Winter agricultural area 20.1-42.0 (mean 27.9 pg/m~3), winter Industrial Zone 26.8-77.1 (mean 42.7 pg/m~3), the summer agricultural area 32.4-73.0 (mean 40.8 pg/m~3), summer Industrial Zone 9.04-62.2 (mean 45.6) pg/m~3; the alpha -HCH is dominant in most atmospheric samples. The results show that the use of HCHs in soil and air residue mainly comes from the history of the 666 industry. For most of the soil in the chiral -HCH (-) - alpha -HCH preferentially degraded, and the atmosphere in winter (+) - alpha -HCH preferentially degraded, summer (-) - alpha -HCH preferential degradation. The fugacity fraction showed that the study area HCH S from the soil to the atmosphere in the volatile state, the two sources of HCHs soil remains in the atmosphere, and the winter agricultural area. A strong tendency to volatilization of HCHs to evaluate the health risk of HCHs in soil and air through a variety of ways after exposure to the human body, HCHs on the human body does not have non carcinogenic risk, risk of cancer is very low. (2) concentration of regional soil in winter than that in summer the total DDTs concentration, agricultural area concentration is greater than the industrial area of concentration, the specific concentration level: Winter agricultural area 0.721-1594 (mean 96.5 ng/g), winter Industrial Zone 0.608-79.8 (mean 12.3) ng/g, the summer agricultural area 0.312-938 (mean 67.5 ng/g), summer Industrial Zone 0.572-125 (mean 12.1 ng/g); the P, p'-DDE and P, p'-DDT is dominant in most soil samples. In contrast with the concentration of space-time in soils, the concentration of atmospheric DDTs Sigma in summer than in winter, no significant spatial difference. The concentration level, winter agricultural area 37.1-363 (mean 52.1) pg/m~3, winter Industrial Zone 48.5-141 (mean 42.5 pg/m~3), the summer agricultural area 90.7-325 (mean 137 pg/m~3), summer Industrial Zone 33.5-401 (mean 162) pg/m~3; P, p'-DDE is dominant in most atmospheric samples. Analysis results show that the use of DDTs source, residues in most soils in the history of industrial DDTs, the impact of new sources of some soil may be three dicofol or DDTs used again due to the influence of the atmosphere; most of the samples may be a new source of such three kill mites. For the chlorine alcohol chiral o, p'-DDD and O, p'-DDT all, atmosphere and soil samples of O, p'-DDT and O, p'-DDD are non racemic. For O, p'-DDT, soil and atmosphere are (+) - enantiomer of preferential degradation; for O, p'-DDD, soil (+) - enantiomer of the atmosphere is the preferred degradation. (- ) - enantiomers experience first degradation. The fugacity fraction showed that some samples of DDTs in a volatile state, part of DDTs in the sample is in balance, the remaining samples in DDTs in the subsidence state. High and winter agricultural area DDTs fugacity fraction. To assess the health risk of DDTs in soil and air through a variety of ways of exposure in the human body, DDTs on the human body does not have non carcinogenic risk, risk of cancer is very low. (3) the study area soil total PCBs concentration has no significant spatial difference, concentration in winter than summer concentration, the specific concentration level: Winter agricultural area 68.6-1828 (mean 524 pg/g), 104-1838 (winter industrial zone the mean value of 404 pg/g), the summer agricultural area 47.4-1327 (mean 323) pg/g summer Industrial Zone 25.2-804 (mean 307 pg/g); 5Cl- in most soil samples and 6Cl-PCBs was dominant. The concentration of atmospheric PCBs has no significant spatial difference Specific concentration in winter than that in summer, the concentration, the specific concentration level: Winter agricultural area in 224-480 (mean 345) pg/m~3, winter Industrial Zone 233-537 (mean 326) pg/m~3, summer agricultural district 135-553 (mean 353) pg/m~3 summer Industrial Zone 39.6-253 (mean 133) pg/m~3; 7Cl-PCBs is dominant in most atmospheric samples. The analysis results showed that the soil PCBs from industrial Aroclor1254, and the atmosphere may be mixed pollution in a variety of industrial products of Aroclor. The fugacity fraction showed that most Zhi sample PCBs in equilibrium or from atmosphere to soil subsidence, the molecular size and the size of PCBs. The fugacity fraction of winter fugacity the molecular weight fraction is higher than that in summer, the spatial variation and PCBs. Health risk assessment indicated that individual soil samples for PCBs in children showed a non carcinogenic risk, most of the remaining soil and air samples PCBs has no non carcinogenic risk to human body. Part of PCBs in soil and air samples will cause low carcinogenic risk to human body, and the rest samples will have a very low carcinogenic risk to human body.

【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X592

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王芬 ,楊逸淇;全球總動員圍剿POPs[J];環(huán)境導(dǎo)報;2003年23期

2 ;Take actions against Persistent Organic Pollutants (POPs)[J];Journal of Environmental Sciences;2004年06期

3 ;聯(lián)合國環(huán)境規(guī)劃署POPs分析示范實(shí)驗室落戶中國科學(xué)院生態(tài)環(huán)境研究中心[J];環(huán)境化學(xué);2006年06期

4 王芬;;全球總動員圍剿POPs[J];生命世界;2006年05期

5 林科;;聯(lián)合國POPs實(shí)驗室落戶中科院[J];農(nóng)藥市場信息;2006年23期

6 馮文;張鵬;張建揚(yáng);;紡織品中持久性有機(jī)污染物(POPs)的分析[J];紡織導(dǎo)報;2008年01期

7 彭麗;;我國POPs污染場地治理刻不容緩[J];農(nóng)藥市場信息;2008年12期

8 丁峰;沈偉;顧金利;賈學(xué)敏;吳相山;方武均;;POPs污染及其治理方法[J];科技情報開發(fā)與經(jīng)濟(jì);2009年08期

9 安泉;;潛伏的殺手——POPs(二)[J];環(huán)境;2010年02期

10 安泉;;潛伏的殺手——POPs(三)[J];環(huán)境;2010年03期

相關(guān)會議論文 前10條

1 王謀;;寧夏持久性有機(jī)污染物(POPs)防治的有關(guān)問題探討[A];持久性有機(jī)污染物論壇2011暨第六屆持久性有機(jī)污染物全國學(xué)術(shù)研討會論文集[C];2011年

2 朱麗波;李申杰;楊炳建;慎迪飛;;寧波POPs地方履約應(yīng)對策略初探[A];持久性有機(jī)污染物論壇2009暨第四屆持久性有機(jī)污染物全國學(xué)術(shù)研討會論文集[C];2009年

3 任智輝;裴國霞;張琦;張巖;;逸度模型應(yīng)用于POPs研究中若干問題的探討[A];持久性有機(jī)污染物論壇2010暨第五屆持久性有機(jī)污染物全國學(xué)術(shù)研討會論文集[C];2010年

4 周隆超;黃俊;鄧述波;余剛;;歐盟POPs科研支撐的理論模型及在我國的應(yīng)用前景[A];持久性有機(jī)污染物論壇2010暨第五屆持久性有機(jī)污染物全國學(xué)術(shù)研討會論文集[C];2010年

5 任南琪;劉麗艷;齊虹;李一凡;;大尺度環(huán)境(區(qū)域和全球)中POPs研究[A];持久性有機(jī)污染物論壇2010暨第五屆持久性有機(jī)污染物全國學(xué)術(shù)研討會論文集[C];2010年

6 呂俊崗;劉瀟威;李凌云;李衛(wèi)建;買光熙;王璐;;土壤中POPs污染現(xiàn)狀與化學(xué)分析技術(shù)研究進(jìn)展[A];全國耕地土壤污染監(jiān)測與評價技術(shù)研討會論文集[C];2006年

7 石毓民;;使用美國EPA方法大量快速分析土壤,油和水中POPs樣品[A];持久性有機(jī)污染物論壇2006暨第一屆持久性有機(jī)污染物全國學(xué)術(shù)研討會論文集[C];2006年

8 鄭濤;楊曉東;;鋼鐵工業(yè)持久性有機(jī)污染物(POPs)狀況及控制措施[A];持久性有機(jī)污染物論壇2006暨第一屆持久性有機(jī)污染物全國學(xué)術(shù)研討會論文集[C];2006年

9 孫玉艷;徐鐵兵;馬躍濤;王宇青;;POPs危害與管理對策分析[A];環(huán)境與健康:河北省環(huán)境科學(xué)學(xué)會環(huán)境與健康論壇暨2008年學(xué)術(shù)年會論文集[C];2008年

10 侯貴光;吳舜澤;逯元堂;朱建華;張建成;韓文亞;劉軍民;王桂娟;;POPs公約履約資金渠道研究[A];持久性有機(jī)污染物論壇2010暨第五屆持久性有機(jī)污染物全國學(xué)術(shù)研討會論文集[C];2010年

相關(guān)重要報紙文章 前10條

1 記者 王繁泓;削減和淘汰POPs項目啟動[N];中國化工報;2001年

2 趙曉強(qiáng);構(gòu)筑POPs公約數(shù)字基石[N];中國化工報;2002年

3 李宏乾;我國POPs控制工作逐步啟動[N];中國化工報;2004年

4 記者 姜虹;我防治POPs污染面臨雙重挑戰(zhàn)[N];中國化工報;2005年

5 本報記者 王玲;狙擊POPs[N];經(jīng)濟(jì)日報;2004年

6 李禾;POPs:你還不了解的隱形“殺手”[N];科技日報;2004年

7 莊國泰;關(guān)于推進(jìn)我國POPs公約履約工作的思考[N];中國環(huán)境報;2006年

8 徐曉白;POPs廢物和污染場地危害及其控制[N];中國環(huán)境報;2007年

9 王秀蘭;首個POPs環(huán)境安全“973”項目啟動[N];中國化工報;2004年

10 李宏乾;淘汰POPs需加緊開發(fā)適用技術(shù)[N];中國化工報;2004年

相關(guān)博士學(xué)位論文 前6條

1 劉昕;持久性有機(jī)污染物的森林過濾效應(yīng)研究[D];中國科學(xué)院研究生院(廣州地球化學(xué)研究所);2016年

2 趙玉麗;大氣持久性有機(jī)污染物在樹木表皮中的富集機(jī)制初探及其在大氣污染時空分辨監(jiān)測中的應(yīng)用[D];廈門大學(xué);2008年

3 王泰;海河河口水環(huán)境中POPs的污染特征及來源解析[D];清華大學(xué);2010年

4 朱剛兵;基于β-環(huán)糊精和納米碳材料的POPs電化學(xué)傳感研究[D];湖南大學(xué);2013年

5 丁輝;大沽排污河POPs歸趨行為[D];天津大學(xué);2005年

6 劉小真;鄱陽湖流域底質(zhì)重金屬及殺蟲劑類POPs垂直污染分布特征[D];南昌大學(xué);2008年

相關(guān)碩士學(xué)位論文 前10條

1 酈倩玉;浮游藻類對POPs的吸附降解及其生理生態(tài)響應(yīng)研究[D];南京師范大學(xué);2015年

2 方艷艷;典型殺蟲劑類POPs污染場地及其周邊污染特征與環(huán)境風(fēng)險評估研究[D];重慶交通大學(xué);2015年

3 朱思宇;杭州市典型農(nóng)業(yè)和工業(yè)區(qū)氯代POPs的殘留、土氣交換特征及健康風(fēng)險研究[D];浙江大學(xué);2017年

4 康凱;重慶市POPs分布和排放狀況的初步研究[D];重慶大學(xué);2009年

5 曲穎群;吉林省主要土壤類型中持久性有機(jī)污染物(POPs)的研究[D];東北師范大學(xué);2010年

6 梁寶翠;陜西省POPs污染綜合防治對策研究[D];西北大學(xué);2012年

7 弓俊微;重慶市廢棄殺蟲劑類POPs調(diào)查及前處理方案研究[D];重慶大學(xué);2009年

8 蔡蘇芬;吉林省持久性有機(jī)污染物(POPs)污染狀況及防治對策研究[D];吉林大學(xué);2012年

9 李冬梅;西安市蔬菜基地持久性有機(jī)污染物(POPs)殘留狀況研究[D];陜西師范大學(xué);2008年

10 劉華林;河口持久性有機(jī)污染物(POPs)多介質(zhì)分配特征及影響機(jī)制研究[D];華東師范大學(xué);2005年

,

本文編號:1718561

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shengtaihuanjingbaohulunwen/1718561.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2413d***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com