基于改進(jìn)遺傳算法的新型水面無(wú)人艇性能綜合優(yōu)化分析
本文選題:水面無(wú)人艇 + 改進(jìn)遺傳算法。 參考:《江蘇科技大學(xué)學(xué)報(bào)(自然科學(xué)版)》2017年01期
【摘要】:艇型的設(shè)計(jì)受到多種因素約束,各種因素常;ハ嗝,因此,若以某一個(gè)指標(biāo)為主,將會(huì)減弱其他方面的性能.所以在選取艇型的各項(xiàng)參數(shù)時(shí),應(yīng)全面綜合考慮各個(gè)參數(shù)對(duì)艇型影響程度.文中對(duì)一種新型水面無(wú)人艇的快速性、操縱性、耐波性和抗傾覆性進(jìn)行綜合優(yōu)化計(jì)算,將水面無(wú)人艇的綜合性能優(yōu)化問(wèn)題轉(zhuǎn)化為4個(gè)子系統(tǒng)性能的優(yōu)化問(wèn)題.對(duì)4個(gè)子系統(tǒng)的設(shè)計(jì)變量進(jìn)行耦合,并將子目標(biāo)函數(shù)以一定的形式組合成總目標(biāo)函數(shù).兼顧4個(gè)性能的約束條件,構(gòu)造懲罰函數(shù),最終構(gòu)造出水面無(wú)人艇的性能綜合優(yōu)化數(shù)學(xué)模型.文中提出3種策略改進(jìn)遺傳算法,通過(guò)優(yōu)化數(shù)學(xué)模型接口來(lái)編制、優(yōu)化軟件,并進(jìn)行優(yōu)化計(jì)算分析.研究結(jié)果表明:成長(zhǎng)機(jī)制改進(jìn)的遺傳算法具有很好的尋優(yōu)性能,且成長(zhǎng)機(jī)制中遺傳因子和進(jìn)化權(quán)重對(duì)尋優(yōu)效果的影響最大.
[Abstract]:The design of boat type is constrained by many factors, and the factors are often contradictory. Therefore, if one index is the main factor, the performance of other aspects will be weakened. Therefore, the influence of each parameter on boat type should be considered comprehensively. In this paper, the performance optimization of a new type of surface unmanned craft, such as rapidity, maneuverability, wave resistance and capsize resistance, is comprehensively optimized. The optimization problem of the comprehensive performance of the surface unmanned craft is transformed into the optimization of the performance of four subsystems. The design variables of the four subsystems are coupled and the subobjective functions are combined into the total objective functions in a certain form. Finally, the comprehensive optimization mathematical model of the performance of the surface unmanned craft is constructed by taking into account the four performance constraints and constructing the penalty function. In this paper, three strategies are proposed to improve the genetic algorithm, which are programmed by optimizing the mathematical model interface, optimizing the software, and carrying out the optimization calculation and analysis. The results show that the improved genetic algorithm has a good performance and genetic factors and evolutionary weights have the greatest influence on the optimization performance in the growth mechanism.
【作者單位】: 江蘇科技大學(xué)船舶與海洋工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金資助項(xiàng)目(51379094)
【分類(lèi)號(hào)】:TP18;U662
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊艷麗,史維祥;一種新的優(yōu)化算法—遺傳算法的設(shè)計(jì)[J];液壓氣動(dòng)與密封;2001年02期
2 王毅,曹樹(shù)良;遺傳算法在并聯(lián)水泵系統(tǒng)運(yùn)行優(yōu)化中的應(yīng)用[J];流體機(jī)械;2003年10期
3 趙義紅,李正文,何其四;生物信息處理系統(tǒng)遺傳算法探討[J];成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年05期
4 李凡,黃數(shù)林,張東風(fēng);一種改進(jìn)的多倍體遺傳算法[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年01期
5 韋雪潔;黎明;劉高航;田貴超;;注入式的遺傳算法的分析與研究[J];南昌航空工業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年01期
6 閻綱;;遺傳算法及其仿真[J];湖南工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2006年04期
7 ;遺傳算法[J];電網(wǎng)與清潔能源;2008年10期
8 吳玫;陸金桂;;遺傳算法的研究進(jìn)展綜述[J];機(jī)床與液壓;2008年03期
9 李培植;肖利明;于靜濤;;基于遺傳算法的結(jié)構(gòu)優(yōu)化方法[J];公路交通科技(應(yīng)用技術(shù)版);2008年08期
10 于金;金樂(lè);杜海璐;;基于改進(jìn)遺傳算法的集裝箱裝載優(yōu)化問(wèn)題研究[J];船海工程;2008年05期
相關(guān)會(huì)議論文 前10條
1 陳家照;廖海濤;張中位;羅寅生;;一種改進(jìn)的遺傳算法及其在路徑規(guī)劃中的應(yīng)用[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2009年
2 李國(guó)云;劉穎;薛梅;鄔志敏;;遺傳算法在高溫空冷冷凝器優(yōu)化設(shè)計(jì)中的應(yīng)用[A];第五屆全國(guó)制冷空調(diào)新技術(shù)研討會(huì)論文集[C];2008年
3 王志軍;李守春;張爽;;改進(jìn)的遺傳算法在反演問(wèn)題中的應(yīng)用[A];新世紀(jì) 新機(jī)遇 新挑戰(zhàn)——知識(shí)創(chuàng)新和高新技術(shù)產(chǎn)業(yè)發(fā)展(上冊(cè))[C];2001年
4 任燕翔;姜立;劉連民;從滋慶;;改進(jìn)遺傳算法在三維日照方案優(yōu)化中的應(yīng)用[A];工程三維模型與虛擬現(xiàn)實(shí)表現(xiàn)——第二屆工程建設(shè)計(jì)算機(jī)應(yīng)用創(chuàng)新論壇論文集[C];2009年
5 韓娟;;遺傳算法概述[A];第三屆河南省汽車(chē)工程科技學(xué)術(shù)研討會(huì)論文集[C];2006年
6 龐國(guó)仲;王元西;;基于遺傳算法控制步長(zhǎng)的定性仿真方法[A];'2000系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2000年
7 張忠華;楊淑瑩;;基于遺傳算法的聚類(lèi)設(shè)計(jì)[A];全國(guó)第二屆信號(hào)處理與應(yīng)用學(xué)術(shù)會(huì)議?痆C];2008年
8 何翠紅;區(qū)益善;;遺傳算法及其在計(jì)算機(jī)編程中的應(yīng)用[A];1995年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議暨智能自動(dòng)化專業(yè)委員會(huì)成立大會(huì)論文集(下冊(cè))[C];1995年
9 靳開(kāi)巖;張乃堯;;幾種實(shí)用遺傳算法及其比較[A];1996年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];1996年
10 王宏剛;曾建潮;李志宏;;攝動(dòng)遺傳算法[A];1996年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];1996年
相關(guān)重要報(bào)紙文章 前1條
1 林京;《神經(jīng)網(wǎng)絡(luò)和遺傳算法在水科學(xué)領(lǐng)域的應(yīng)用》將面市[N];中國(guó)水利報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 蔡美菊;交互式遺傳算法及其在隱性目標(biāo)決策問(wèn)題中的應(yīng)用研究[D];合肥工業(yè)大學(xué);2015年
2 張士偉;三維聲學(xué)快速多極基本解法在機(jī)械噪聲預(yù)測(cè)中的應(yīng)用研究[D];沈陽(yáng)工業(yè)大學(xué);2016年
3 高軍;無(wú)鉛焊料本構(gòu)模型及其參數(shù)識(shí)別方法研究[D];南京航空航天大學(xué);2015年
4 Amjad Mahmood;半監(jiān)督進(jìn)化集成及其在網(wǎng)絡(luò)視頻分類(lèi)中的應(yīng)用[D];西南交通大學(xué);2015年
5 周輝仁;遞階遺傳算法理論及其應(yīng)用研究[D];天津大學(xué);2008年
6 郝國(guó)生;交互式遺傳算法中用戶的認(rèn)知規(guī)律及其應(yīng)用[D];中國(guó)礦業(yè)大學(xué);2009年
7 侯格賢;遺傳算法及其在跟蹤系統(tǒng)中的應(yīng)用研究[D];西安電子科技大學(xué);1998年
8 馬國(guó)田;遺傳算法及其在電磁工程中的應(yīng)用[D];西安電子科技大學(xué);1998年
9 唐文艷;結(jié)構(gòu)優(yōu)化中的遺傳算法研究和應(yīng)用[D];大連理工大學(xué);2002年
10 周激流;遺傳算法理論及其在水問(wèn)題中應(yīng)用的研究[D];四川大學(xué);2000年
相關(guān)碩士學(xué)位論文 前10條
1 張英俐;基于遺傳算法的作曲系統(tǒng)研究[D];山東師范大學(xué);2006年
2 鐘海萍;原對(duì)偶遺傳算法與蟻群算法的一種融合算法[D];暨南大學(xué);2013年
3 李志添;模糊遺傳算法與資源優(yōu)化配置的預(yù)測(cè)控制[D];華南理工大學(xué);2015年
4 王琳琳;新型雙層液壓轎運(yùn)車(chē)車(chē)廂的設(shè)計(jì)研究[D];上海工程技術(shù)大學(xué);2015年
5 李海全;基于遺傳算法的建筑體形系數(shù)及迎風(fēng)面積比優(yōu)化方法研究[D];華南理工大學(xué);2015年
6 彭騫;基于遺傳算法的山區(qū)高等級(jí)公路縱斷面智能優(yōu)化方法研究[D];昆明理工大學(xué);2015年
7 周玉林;基于小波分析和遺傳算法的配電網(wǎng)故障檢測(cè)[D];昆明理工大學(xué);2015年
8 郭頌;基于粗糙集和遺傳算法的數(shù)字管道生產(chǎn)管理系統(tǒng)研究[D];昆明理工大學(xué);2015年
9 吳南;數(shù)值逼近遺傳算法的研究應(yīng)用[D];華南理工大學(xué);2015年
10 于光帥;一類(lèi)優(yōu)化算法的改進(jìn)研究與應(yīng)用[D];渤海大學(xué);2015年
,本文編號(hào):2029390
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/2029390.html