支持向量機(jī)在高考成績(jī)預(yù)測(cè)分析中的應(yīng)用
本文選題:支持向量機(jī) + 高考; 參考:《中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào)》2017年01期
【摘要】:支持向量機(jī)作為一種機(jī)器學(xué)習(xí)算法因其良好的推廣性和強(qiáng)大的非線性處理能力而令人矚目.為此將支持向量機(jī)與國(guó)家高考的實(shí)際數(shù)據(jù)相結(jié)合,以具體高校的高考模擬考試成績(jī)?yōu)橹饕?xùn)練數(shù)據(jù),進(jìn)行學(xué)生的高考成績(jī)預(yù)測(cè).實(shí)驗(yàn)考慮了三種情形.一是通過(guò)六次模擬考試的特征分來(lái)預(yù)測(cè)高考的特征分;二是通過(guò)六次模擬考試和高考的特征分來(lái)預(yù)測(cè)高考的錄取批次;三是通過(guò)六次模擬考試的特征分和高考的預(yù)測(cè)特征分來(lái)預(yù)測(cè)高考的錄取批次.通過(guò)與神經(jīng)網(wǎng)絡(luò)算法的比較,實(shí)驗(yàn)結(jié)果均表明了支持向量機(jī)方法的穩(wěn)定性和良好的預(yù)測(cè)性.
[Abstract]:As a machine learning algorithm, support vector machine (SVM) attracts much attention because of its good generalization and strong nonlinear processing ability. In this paper, support vector machine (SVM) is combined with the actual data of the national college entrance examination. The main training data are the simulated test results of the college entrance examination, and the results of the students' college entrance examination are forecasted. Three cases were considered in the experiment. The first is to predict the characteristic score of the college entrance examination by the characteristic points of the six simulated examinations, the other is to predict the batch of the entrance examination by the characteristic points of the six simulated examinations and the college entrance examination. The third is to predict the matriculation batch of the college entrance examination by the characteristic score of six simulated examinations and the forecast characteristic score of the college entrance examination. Compared with the neural network algorithm, the experimental results show that the support vector machine method is stable and predictable.
【作者單位】: 蘇州大學(xué)計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(61373093,61672364) 江蘇省自然科學(xué)基金(BK20140008) 江蘇省高校自然科學(xué)研究項(xiàng)目(13KJA520001) 江蘇省青藍(lán)工程資助
【分類(lèi)號(hào)】:TP181
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳娟;范玉妹;王麗;;關(guān)于改進(jìn)的支持向量機(jī)的研究[J];攀枝花學(xué)院學(xué)報(bào);2006年05期
2 劉碩明;劉佳;楊海濱;;一種新的多類(lèi)支持向量機(jī)算法[J];計(jì)算機(jī)應(yīng)用;2008年S2期
3 尹傳環(huán);牟少敏;田盛豐;黃厚寬;;單類(lèi)支持向量機(jī)的研究進(jìn)展[J];計(jì)算機(jī)工程與應(yīng)用;2012年12期
4 王云英;閻滿(mǎn)富;;C-支持向量機(jī)及其改進(jìn)[J];唐山師范學(xué)院學(xué)報(bào);2012年05期
5 李逢煥;;試述不確定支持向量機(jī)應(yīng)用分析及改進(jìn)思路[J];中國(guó)證券期貨;2012年12期
6 邵惠鶴;支持向量機(jī)理論及其應(yīng)用[J];自動(dòng)化博覽;2003年S1期
7 曾嶸,蔣新華,劉建成;基于支持向量機(jī)的異常值檢測(cè)的兩種方法[J];信息技術(shù);2004年05期
8 張凡,賀蘇寧;模糊判決支持向量機(jī)在自動(dòng)語(yǔ)種辨識(shí)中的研究[J];計(jì)算機(jī)工程與應(yīng)用;2004年21期
9 魏玲,張文修;基于支持向量機(jī)集成的分類(lèi)[J];計(jì)算機(jī)工程;2004年13期
10 沈翠華,鄧乃揚(yáng),肖瑞彥;基于支持向量機(jī)的個(gè)人信用評(píng)估[J];計(jì)算機(jī)工程與應(yīng)用;2004年23期
相關(guān)會(huì)議論文 前10條
1 余樂(lè)安;姚瀟;;基于中心化支持向量機(jī)的信用風(fēng)險(xiǎn)評(píng)估模型[A];第六屆(2011)中國(guó)管理學(xué)年會(huì)——商務(wù)智能分會(huì)場(chǎng)論文集[C];2011年
2 劉希玉;徐志敏;段會(huì)川;;基于支持向量機(jī)的創(chuàng)新分類(lèi)器[A];山東省計(jì)算機(jī)學(xué)會(huì)2005年信息技術(shù)與信息化研討會(huì)論文集(一)[C];2005年
3 史曉濤;劉建麗;駱玉榮;;一種抗噪音的支持向量機(jī)學(xué)習(xí)方法[A];全國(guó)第19屆計(jì)算機(jī)技術(shù)與應(yīng)用(CACIS)學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2008年
4 何琴淑;劉信恩;肖世富;;基于支持向量機(jī)的系統(tǒng)辨識(shí)方法研究及應(yīng)用[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
5 劉駿;;基于支持向量機(jī)方法的衢州降雪模型[A];第五屆長(zhǎng)三角氣象科技論壇論文集[C];2008年
6 王婷;胡秀珍;;基于組合向量的支持向量機(jī)方法預(yù)測(cè)膜蛋白類(lèi)型[A];第十一次中國(guó)生物物理學(xué)術(shù)大會(huì)暨第九屆全國(guó)會(huì)員代表大會(huì)摘要集[C];2009年
7 趙晶;高雋;張旭東;謝昭;;支持向量機(jī)綜述[A];全國(guó)第十五屆計(jì)算機(jī)科學(xué)與技術(shù)應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2003年
8 周星宇;王思元;;智能數(shù)學(xué)與支持向量機(jī)[A];2005年中國(guó)智能自動(dòng)化會(huì)議論文集[C];2005年
9 顏根廷;馬廣富;朱良寬;宋斌;;一種魯棒支持向量機(jī)算法[A];2006中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];2006年
10 侯澍e,
本文編號(hào):2026427
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/2026427.html