中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 科技論文 > 自動(dòng)化論文 >

大紅斑蝶算法及離子運(yùn)動(dòng)算法的改進(jìn)研究

發(fā)布時(shí)間:2018-06-14 23:17

  本文選題:改進(jìn)大紅斑蝶優(yōu)化算法(IMBO) + 改進(jìn)離子運(yùn)動(dòng)算法(IIMO); 參考:《廣西民族大學(xué)》2017年碩士論文


【摘要】:大紅斑蝶優(yōu)化算法(MBO)和離子運(yùn)動(dòng)算法(IMO)均為2015年新提出的群智能隨機(jī)優(yōu)化算法。然而這兩種算法仍存在局部搜索能力不強(qiáng)、優(yōu)化精度不高、早熟收斂等不足,算法的理論基礎(chǔ)也還不完善;谶@一情況,本論文就如何改進(jìn)這兩種算法的優(yōu)化性能展開(kāi)研究。本論文的主要研究成果如下:(1)針對(duì)大紅斑蝶優(yōu)化算法仍存在全局搜索能力不強(qiáng)、收斂速度慢、易陷入局部極值之不足,提出一種采用動(dòng)態(tài)分割種群策略的改進(jìn)MBO算法。該算法采用將群體動(dòng)態(tài)隨機(jī)分割成兩個(gè)子群體的策略,不同子群中的大紅斑蝶采用不同的搜索方法,以保持種群搜索的多樣性。實(shí)驗(yàn)結(jié)果表明,改進(jìn)后的MBO算法的全局搜索能力有了明顯地提高,在函數(shù)優(yōu)化中具有更好的收斂速度及優(yōu)化精度。(2)提出一種解決多目標(biāo)優(yōu)化問(wèn)題的MOIMBO。實(shí)驗(yàn)結(jié)果表明,該算法解決多目標(biāo)優(yōu)化問(wèn)題的平均性能均優(yōu)于PSO及MBO算法。(3)為了克服離子運(yùn)動(dòng)算法(IMO)存在之不足,提出一種新的改進(jìn)離子運(yùn)動(dòng)算法(IIMO)。該IIMO算法基于同類(lèi)離子相互排斥而異類(lèi)離子相互吸引、以及離子在液態(tài)空間中出現(xiàn)隨機(jī)移動(dòng)的特征,刻畫(huà)出一種新的離子運(yùn)動(dòng)數(shù)學(xué)模型。實(shí)驗(yàn)結(jié)果表明:IIMO算法比IMO和PSO具有更快的收斂速度、更強(qiáng)的局部搜索能力和全局搜索能力,IIMO算法的魯棒性比IMO算法和PSO算法強(qiáng)。
[Abstract]:Both MBOs and IMO are new swarm intelligence stochastic optimization algorithms proposed in 2015. However, the two algorithms still have some shortcomings, such as weak local search ability, low optimization accuracy, premature convergence and so on, and the theoretical basis of the algorithm is not perfect. Based on this situation, this paper studies how to improve the optimization performance of these two algorithms. The main research results of this paper are as follows: (1) aiming at the deficiency of global search ability, slow convergence rate and easy to fall into local extremum in the algorithm, an improved MBO algorithm based on dynamic population segmentation strategy is proposed. The algorithm adopts the strategy of randomly dividing the population into two subpopulations, and the different search methods are used by the butterflies in different subgroups to keep the diversity of the population search. The experimental results show that the global search ability of the improved MBO algorithm is obviously improved, and the improved MBO algorithm has better convergence speed and optimization precision in function optimization. The experimental results show that the average performance of the proposed algorithm is better than that of PSO and MBO algorithms. In order to overcome the shortcomings of ion motion algorithm (IMO), a new improved ion motion algorithm (IIMO) is proposed. The IIMO algorithm describes a new mathematical model of ion motion based on the characteristics of the similar ions repel each other and the heterogeneous ions attract each other and the ions move randomly in the liquid space. The experimental results show that the ratio IIMO algorithm has faster convergence speed and stronger local and global search ability than IMO and PSO. The robustness of IIMO algorithm is better than that of IMO algorithm and PSO algorithm.
【學(xué)位授予單位】:廣西民族大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP18

【參考文獻(xiàn)】

相關(guān)期刊論文 前4條

1 楊恢先;劉子文;汪俊;王緒四;謝鵬鶴;;改進(jìn)的PSO混合算法[J];計(jì)算機(jī)應(yīng)用;2010年06期

2 任子暉;王堅(jiān);;一種動(dòng)態(tài)改變慣性權(quán)重的自適應(yīng)粒子群算法[J];計(jì)算機(jī)科學(xué);2009年02期

3 沈顯君;王偉武;鄭波盡;李元香;;基于改進(jìn)的微粒群優(yōu)化算法的0-1背包問(wèn)題求解[J];計(jì)算機(jī)工程;2006年18期

4 李曉磊,邵之江,錢(qián)積新;一種基于動(dòng)物自治體的尋優(yōu)模式:魚(yú)群算法[J];系統(tǒng)工程理論與實(shí)踐;2002年11期

相關(guān)碩士學(xué)位論文 前1條

1 張自如;PAES多目標(biāo)優(yōu)化算法及其應(yīng)用研究[D];蘭州理工大學(xué);2012年

,

本文編號(hào):2019397

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/2019397.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a9f0b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com