基于協(xié)同進(jìn)化的多目標(biāo)優(yōu)化算法研究及應(yīng)用
發(fā)布時(shí)間:2018-06-13 12:53
本文選題:協(xié)同進(jìn)化 + 多目標(biāo)優(yōu)化; 參考:《南京郵電大學(xué)》2017年碩士論文
【摘要】:工程實(shí)踐與科學(xué)研究中會(huì)經(jīng)常遇到一些多目標(biāo)優(yōu)化問題,這些優(yōu)化問題如果采用傳統(tǒng)的解決方法處理會(huì)出現(xiàn)一定的缺陷和弊端。雖然使用進(jìn)化算法解決多目標(biāo)優(yōu)化問題已被證明是一個(gè)有效的方法,但是目前進(jìn)化多目標(biāo)優(yōu)化算法還不完善,這些進(jìn)化算法還存在解集分布不均勻、收斂早熟和精度差等缺點(diǎn)。協(xié)同進(jìn)化算法是近年來提出的一種解決多目標(biāo)優(yōu)化問題的新方法,與傳統(tǒng)進(jìn)化多目標(biāo)優(yōu)化算法相比,它能在一定的程度上提高全局收斂性和避免早熟。然而目前的協(xié)同進(jìn)化多目標(biāo)優(yōu)化算法在解決多目標(biāo)問題,然而目前的協(xié)同進(jìn)化多目標(biāo)優(yōu)化算法在解決多目標(biāo)問題,得出非支配解集的分布性和多樣性方面不太理想,并且算法的全局收斂性還有待進(jìn)一步提高。本文針對(duì)目前協(xié)同進(jìn)化算法的不足提出了相應(yīng)的改進(jìn)措施和策略,整合改進(jìn)的協(xié)同進(jìn)化算法和進(jìn)化多目標(biāo)優(yōu)化機(jī)制,研究出更有效的協(xié)同進(jìn)化多目標(biāo)優(yōu)化算法,并將該算法有效地應(yīng)用于解決機(jī)器人多目標(biāo)路徑規(guī)劃問題,主要研究工作如下:(1)針對(duì)協(xié)同進(jìn)化算法中選取代表個(gè)體的導(dǎo)向性不強(qiáng)的問題,提出了一種分組排序評(píng)估策略的合作協(xié)同進(jìn)化算法。通過不斷將每一代新種群進(jìn)行有序排列的分組評(píng)估,選擇當(dāng)代最優(yōu)個(gè)體組成代表組合,使選取的代表組合更具有導(dǎo)向性。將該算法與其它進(jìn)化算法采用典型的測(cè)試函數(shù)進(jìn)行對(duì)比測(cè)試實(shí)驗(yàn),結(jié)果表明改進(jìn)的協(xié)同進(jìn)化算法具有更快的收斂速度和更強(qiáng)的全局收斂能力。將上述提出的基于分組排序評(píng)估策略的合作協(xié)同進(jìn)化算法應(yīng)用于復(fù)雜PID控制系統(tǒng)參數(shù)優(yōu)化,實(shí)驗(yàn)結(jié)果表明,該算法能高效地搜索到給定性能指標(biāo)要求的PID參數(shù)最優(yōu)組合,具有較好的應(yīng)用前景。(2)針對(duì)多目標(biāo)優(yōu)化算法中非支配解空間分布不均勻以及算法收斂精度不高的問題,將多種群協(xié)作的思想、快速非支配排序的方法以及精英外部檔案的策略相結(jié)合,提出了一種多種群合作協(xié)同多目標(biāo)優(yōu)化算法。采用標(biāo)準(zhǔn)的多目標(biāo)優(yōu)化問題測(cè)試函數(shù)集對(duì)所提出的算法與NSGA-II算法進(jìn)行對(duì)比測(cè)試實(shí)驗(yàn),結(jié)果表明,所提出的多種群合作協(xié)同多目標(biāo)優(yōu)化算法,能獲得更均勻和更精確的非支配解集,達(dá)到更優(yōu)的Pareto前沿面。(3)研究了應(yīng)用所提出的多種群合作協(xié)同多目標(biāo)優(yōu)化算法解決機(jī)器人多目標(biāo)路徑規(guī)劃問題的方法及其實(shí)現(xiàn)。將機(jī)器人多目標(biāo)路徑規(guī)劃任務(wù)進(jìn)行建模,提出了其包含多項(xiàng)性能指標(biāo)要求的多目標(biāo)優(yōu)化模型;給出了多種群合作協(xié)同多目標(biāo)優(yōu)化算法求解的實(shí)現(xiàn)方法。仿真實(shí)驗(yàn)結(jié)果表明,所提出的方法能有效地獲得多目標(biāo)要求下的優(yōu)化路徑。
[Abstract]:Some multi-objective optimization problems are often encountered in engineering practice and scientific research. If traditional methods are adopted to solve these optimization problems, there will be some defects and drawbacks. Although using evolutionary algorithm to solve multi-objective optimization problem has been proved to be an effective method, but at present evolutionary multi-objective optimization algorithm is not perfect, these evolutionary algorithms still have some shortcomings, such as uneven distribution of solution set, premature convergence and poor precision. Coevolutionary algorithm is a new method to solve the multi-objective optimization problem proposed in recent years. Compared with the traditional evolutionary multi-objective optimization algorithm, it can improve the global convergence and avoid prematurity to a certain extent. However, the current coevolutionary multi-objective optimization algorithm is not ideal in solving the multi-objective problem and obtaining the distribution and diversity of the non-dominated solution set. And the global convergence of the algorithm needs to be further improved. In this paper, the corresponding improvement measures and strategies are put forward to overcome the shortcomings of the current co-evolution algorithm, which integrates the improved co-evolution algorithm and the evolutionary multi-objective optimization mechanism, and develops a more effective co-evolution multi-objective optimization algorithm. The algorithm is effectively applied to solve the multi-objective path planning problem of robot. The main research work is as follows: (1) aiming at the problem that the selection of representative individual is not strong in the co-evolutionary algorithm, the main research work is as follows: A cooperative coevolutionary algorithm for grouping ranking evaluation strategy is proposed. Through the grouping evaluation of each generation of new population in order, the representative combination of the best individual is selected, which makes the representative combination more oriented. The experimental results show that the improved co-evolutionary algorithm has faster convergence speed and stronger global convergence ability than other evolutionary algorithms. The cooperative coevolutionary algorithm based on grouping ranking evaluation strategy is applied to the parameter optimization of complex pid control system. The experimental results show that the algorithm can efficiently search the optimal combination of pid parameters required by given performance index. It has a good application prospect. (2) aiming at the problems of non-dominated solution spatial distribution and low convergence precision of multi-objective optimization algorithm, the idea of multi-group cooperation is put forward. A multi-group cooperative and multi-objective optimization algorithm is proposed based on the combination of the fast non-dominated sorting method and the strategy of elite external files. The standard multi-objective optimization problem test function set is used to compare the proposed algorithm with NSGA-II algorithm. The results show that the multi-group cooperative multi-objective optimization algorithm is proposed. A more uniform and accurate set of non-dominated solutions is obtained to achieve a more optimal Pareto frontier. The method and implementation of multi-group cooperative multi-objective optimization algorithm for robot multi-objective path planning are studied in this paper. The multi-objective path planning task of robot is modeled, and the multi-objective optimization model with multiple performance requirements is proposed, and the implementation method of multi-group cooperative multi-objective optimization algorithm is presented. The simulation results show that the proposed method can effectively obtain the optimal path under multi-objective requirements.
【學(xué)位授予單位】:南京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳進(jìn);郭小鋒;孫振業(yè);李松林;;基于改進(jìn)多目標(biāo)粒子群算法的風(fēng)力機(jī)大厚度翼型優(yōu)化設(shè)計(jì)[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年02期
2 陳振興;嚴(yán)宣輝;吳坤安;;具有多形態(tài)種群協(xié)同進(jìn)化的多目標(biāo)優(yōu)化算法[J];模式識(shí)別與人工智能;2014年12期
3 翁理國(guó);王安;夏e,
本文編號(hào):2014091
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/2014091.html
最近更新
教材專著