中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 自動化論文 >

基于改進(jìn)LMD和PNN神經(jīng)網(wǎng)絡(luò)的通風(fēng)機(jī)軸承故障診斷研究

發(fā)布時間:2018-06-02 10:51

  本文選題:通風(fēng)機(jī)軸承 + 特征頻率 ; 參考:《中國礦業(yè)大學(xué)》2017年碩士論文


【摘要】:通風(fēng)機(jī)是一種典型的機(jī)械設(shè)備,運行狀態(tài)直接影響經(jīng)濟(jì)發(fā)展和日常生產(chǎn)。軸承作為維持通風(fēng)機(jī)持續(xù)穩(wěn)定旋轉(zhuǎn)的關(guān)鍵零部件,對其進(jìn)行狀態(tài)監(jiān)測和故障診斷研究具有非常重要的意義。論文以通風(fēng)機(jī)軸承為研究對象,采集了正常、輕度內(nèi)圈故障、重度內(nèi)圈故障、輕度滾動體故障、重度滾動體故障、輕度外圈故障和重度外圈故障7種狀態(tài)的振動信號,對信號特征提取與故障診斷分類等問題進(jìn)行研究。論文介紹了局部均值分解(LMD)算法,通過對仿真信號分析,證明LMD在處理非平穩(wěn)信號優(yōu)于EMD和傳統(tǒng)時頻分析方法;針對LMD存在模態(tài)混疊的問題,引入總體局部均值分解(ELMD)算法;針對ELMD分解完備性差,采用改進(jìn)補充總體局部均值分解(ICELMD),不僅解決模態(tài)混疊問題,同時具有較高的完備性;使用ICELMD對通風(fēng)機(jī)軸承不同狀態(tài)振動信號分解,并提取能量熵和峭度熵作為其特征值,為故障識別奠定了基礎(chǔ)。最后,采用概率神經(jīng)網(wǎng)絡(luò)(PNN)辨識故障類型。針對PNN的模式層結(jié)構(gòu)復(fù)雜,采用主元分析法(PCA)對輸入樣本降維;針對PNN的平滑因子σ難以確定,采用粒子群算法(PSO)對σ的優(yōu)化,提高了分類精度;再針對PSO算法易陷入局部極值和收斂速度慢的缺點,分別采用慣性權(quán)重凹函數(shù)減小策略和適應(yīng)度值穩(wěn)定作為迭代終止條件的優(yōu)化策略。實驗結(jié)果表明,PCA和PSO優(yōu)化的PNN既保證了較快的訓(xùn)練速度,又獲得了更高的故障分類正確率。
[Abstract]:Ventilator is a kind of typical mechanical equipment, the running state directly affects the economic development and daily production. Bearing is the key component to maintain the steady rotation of ventilator. It is of great significance to study the condition monitoring and fault diagnosis of the bearing. The paper takes fan bearing as the research object and collects vibration signals in seven states: normal, mild inner ring fault, severe inner ring fault, mild rolling body fault, heavy rolling body fault, mild outer ring fault and heavy outer ring fault. The problems of signal feature extraction and fault diagnosis classification are studied. The local mean decomposition (LMD) algorithm is introduced in this paper. By analyzing the simulated signals, it is proved that LMD is superior to EMD and traditional time-frequency analysis method in dealing with non-stationary signals, and the total local mean decomposition (LMD) algorithm is introduced to solve the problem of modal aliasing in LMD. In view of the poor completeness of ELMD decomposition, the improved total local mean decomposition is used to solve not only the problem of modal aliasing, but also the high completeness, and the ICELMD is used to decompose the vibration signals of fan bearings in different states. Energy entropy and kurtosis entropy are extracted as eigenvalues, which lays a foundation for fault identification. Finally, probabilistic neural network (PNN) is used to identify fault types. In view of the complexity of the model layer structure of PNN, the principal component analysis method (PCA) is used to reduce the dimension of input samples, and the particle swarm optimization algorithm (PSO) is used to improve the classification accuracy because the smoothing factor 蟽 of PNN is difficult to determine. Aiming at the disadvantage of PSO algorithm which is easy to fall into local extremum and slow convergence rate, the inertial weight concave function reduction strategy and fitness stability are adopted as the optimization strategy of iterative termination condition respectively. The experimental results show that the PNN optimized by PCA and PSO can not only guarantee faster training speed, but also obtain higher accuracy rate of fault classification.
【學(xué)位授予單位】:中國礦業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TH43;TP183

【相似文獻(xiàn)】

相關(guān)期刊論文 前7條

1 付芹;谷立臣;;PNN在旋轉(zhuǎn)機(jī)械故障診斷中的應(yīng)用[J];煤礦機(jī)械;2009年11期

2 何寬芳;肖思文;伍濟(jì)鋼;;基于小波消噪與LMD的埋弧焊交流方波電弧信息提取[J];中國機(jī)械工程;2013年16期

3 陳卡軍,朱云濤,單智陽,謝毅,邵丙銑;基于PNN的算法改進(jìn)及解碼器硬件實現(xiàn)[J];微電子學(xué)與計算機(jī);2004年12期

4 張淑英;曹詠弘;;LMD在慣性導(dǎo)航中的去噪應(yīng)用[J];科技信息;2013年34期

5 陸軍仁;柏逢明;王俊平;;基于PNN的音頻檢測硬度分類器研究[J];長春理工大學(xué)學(xué)報(自然科學(xué)版);2009年01期

6 王禮賢;磨角法測pnn~+結(jié)構(gòu)中n~+層的結(jié)深[J];半導(dǎo)體技術(shù);1981年01期

7 施雷紅;陳強(qiáng);;基于PNN的煤炭輸送機(jī)減速器齒輪故障診斷[J];工業(yè)控制計算機(jī);2012年06期

相關(guān)碩士學(xué)位論文 前3條

1 渠虎;基于改進(jìn)LMD和PNN神經(jīng)網(wǎng)絡(luò)的通風(fēng)機(jī)軸承故障診斷研究[D];中國礦業(yè)大學(xué);2017年

2 張忠云;基于LMD與混沌分形的滾動軸承微小故障診斷研究[D];昆明理工大學(xué);2016年

3 張辛林;基于LMD旋轉(zhuǎn)機(jī)械故障診斷方法的研究及特征提取分析[D];江西理工大學(xué);2013年



本文編號:1968492

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/1968492.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c6cc7***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com