基于樸素貝葉斯算法的氡潛勢預(yù)測方法研究
本文選題:氡潛勢預(yù)測 + NB算法 ; 參考:《中國地質(zhì)大學(北京)》2017年碩士論文
【摘要】:現(xiàn)如今人們愈來愈注重環(huán)境對人類健康的影響,許多科研工作者已經(jīng)展開了對環(huán)境方面的調(diào)查和研究。與人類生命相關(guān)的空氣中,還存在著一些天然放射性的氣體,例如氡。氡是鈾衰變而來的,普遍存在于巖石,土壤和空氣中。氡對健康有危害,有可能導(dǎo)致肺癌,故在高氡水平地區(qū)全面研究氡風險是有必要進行的。中國幅員遼闊,人口也比較稠密,若在所有地區(qū)進行氡測量將會是一項浩大的工程,這在目前是難以實現(xiàn)的。樸素貝葉斯分類器由于其算法簡單易懂,分類效率高效穩(wěn)定,并且有堅實的理論基礎(chǔ),在研究中將樸素貝葉斯分類器添加到氡潛勢預(yù)測中將有效減少測氡工作量。本論文以廣東中山地區(qū)56個有效測點的氡測量數(shù)據(jù)以及相關(guān)參數(shù)為研究范圍,首先對樸素貝葉斯算法(NB)和基于相關(guān)系數(shù)的加權(quán)樸素貝葉斯算法(WNB-CC)的理論進行了深入研究,利用MATLAB軟件編寫工作代碼并進行了正確性驗證;而后對56個有效測點的參數(shù)進行了分步驟等級劃分,最后確定了巖性、土壤氡析出率、鈾含量、土壤氡濃度的等級劃分標準,同時對NB算法和WNB-CC算法的預(yù)測概率進行了比較,得到WNB-CC算法的預(yù)測概率總體上高于NB算法的預(yù)測概率;隨后對WNB-CC算法的單點預(yù)測結(jié)果的預(yù)測失敗點進行了分析。最后論文對未知點預(yù)測的可接受性進行了分析,結(jié)合NB算法和WNB-CC算法單點預(yù)測結(jié)果,總結(jié)了未知點預(yù)測的可接受標準。在此基礎(chǔ)上,論文對中山地區(qū)的未知點進行了預(yù)測,結(jié)果可接受。本文研究基于樸素貝葉斯算法的氡潛勢預(yù)測方法,旨在減少大量的氡實地調(diào)查工作,也為后來人提供一些參考。
[Abstract]:Nowadays, people pay more and more attention to the impact of environment on human health. There are also natural radioactive gases, such as radon, in the air associated with human life. Radon is the decay of uranium and is widespread in rocks, soil and air. Radon is harmful to health and may lead to lung cancer, so it is necessary to study radon risk in high radon level areas. China is a vast and densely populated country. Radon measurement in all regions would be a huge project, which is difficult to achieve at present. Since the naive Bayesian classifier is simple and easy to understand, the classification efficiency is efficient and stable, and has a solid theoretical foundation, adding naive Bayesian classifier to radon potential prediction will effectively reduce the radon measurement workload. In this paper, the radon measurement data and related parameters of 56 effective measuring points in Zhongshan area of Guangdong Province are taken as the research scope. Firstly, the theory of naive Bayes algorithm and weighted naive Bayesian algorithm based on correlation coefficient (WNB-CC) are studied in depth. The working code is compiled and verified by MATLAB software, and then the parameters of 56 effective measuring points are classified step by step, and the classification criteria of lithology, soil radon exhalation rate, uranium content and soil radon concentration are determined. At the same time, the prediction probabilities of NB algorithm and WNB-CC algorithm are compared, the prediction probability of WNB-CC algorithm is higher than that of NB algorithm, and the prediction failure point of single point prediction result of WNB-CC algorithm is analyzed. Finally, the acceptability of unknown point prediction is analyzed, and the acceptable criteria of unknown point prediction are summarized by combining the results of NB algorithm and WNB-CC algorithm. On this basis, the unknown points in Zhongshan area are predicted and the results are acceptable. In this paper, the prediction method of radon potential based on naive Bayes algorithm is studied in order to reduce a large number of radon field surveys and to provide some references for future generations.
【學位授予單位】:中國地質(zhì)大學(北京)
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X837;TP18
【參考文獻】
相關(guān)期刊論文 前10條
1 劉月峰;苑江浩;張曉琳;;改進NB算法在垃圾郵件過濾技術(shù)中的研究[J];微電子學與計算機;2017年04期
2 寶志新;張新軍;;土壤氡濃度環(huán)境因素敏感性分析[J];煤炭技術(shù);2016年06期
3 許艷萍;伍淳華;侯美佳;鄭康鋒;姚珊;;基于改進樸素貝葉斯的Android惡意應(yīng)用檢測技術(shù)[J];北京郵電大學學報;2016年02期
4 汪棟;方方;丁衛(wèi)撐;石慧;;土壤氡濃度日變化影響因素研究[J];物探與化探;2014年03期
5 肖磊;王南萍;周志廣;儲星銘;曾立暉;;廣東中山地區(qū)土壤氡濃度填圖研究[J];現(xiàn)代地質(zhì);2012年06期
6 王南萍;肖磊;李燦蘋;;中國高本底城市的土壤氡水平及分布[J];物探與化探;2012年04期
7 徐仁崇;桂苗苗;彭軍芝;洪云昱;;廈門市土壤氡濃度水平及其分布規(guī)律調(diào)查[J];輻射防護;2012年02期
8 王明仕;閆國龍;;焦作室內(nèi)氡對人體健康影響的評價[J];安全與環(huán)境學報;2011年04期
9 時勁松;邱國華;杜喜臣;李娜娜;;深圳市環(huán)境放射性異常帶識別與影響因素分析[J];世界核地質(zhì)科學;2010年03期
10 酈偉;酈挺;戚志浩;周海斌;胡永芳;慎小松;趙軍;;浙江省諸暨市土壤氡濃度調(diào)查[J];輻射防護;2010年04期
相關(guān)碩士學位論文 前2條
1 姚衡;基于貝葉斯網(wǎng)絡(luò)的大數(shù)據(jù)因果關(guān)系挖掘[D];云南財經(jīng)大學;2016年
2 段晶;樸素貝葉斯分類及其應(yīng)用研究[D];大連海事大學;2011年
,本文編號:1961800
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/1961800.html