給水管網(wǎng)多目標(biāo)間接和直接優(yōu)化算法研究與應(yīng)用
發(fā)布時(shí)間:2018-05-31 06:56
本文選題:給水管網(wǎng) + 多目標(biāo)優(yōu)化 ; 參考:《山東科技大學(xué)》2017年碩士論文
【摘要】:近年來隨著城鎮(zhèn)化建設(shè)的推進(jìn),城市規(guī)模和人口數(shù)量日益增大,對(duì)其賴以生存的水資源的需求也越來越多,這對(duì)城鎮(zhèn)給水管網(wǎng)系統(tǒng)的建設(shè)提出了更高的要求。給水管網(wǎng)系統(tǒng)是城鎮(zhèn)生存和可持續(xù)發(fā)展的重要基礎(chǔ)設(shè)施,其中給水管網(wǎng)的費(fèi)用占系統(tǒng)總費(fèi)用的70%-85%左右,其安全可靠性更是城市居民用水的重要保障。給水管網(wǎng)具有一次性投資費(fèi)用高、社會(huì)意義重大等特點(diǎn),因此針對(duì)給水管網(wǎng)的優(yōu)化設(shè)計(jì)進(jìn)行研究具有重要意義。本文的主要研究?jī)?nèi)容和成果如下:針對(duì)傳統(tǒng)給水管網(wǎng)的優(yōu)化設(shè)計(jì)中,存在的僅以經(jīng)濟(jì)性費(fèi)用為目標(biāo)的單目標(biāo)模型、忽視可靠性保障的重要性以及施工方案單一等問題,本文提出以管網(wǎng)建造總費(fèi)用年折算值最小、可靠性最大為目標(biāo)函數(shù),建立給水管網(wǎng)的多目標(biāo)優(yōu)化數(shù)學(xué)模型。其中,管網(wǎng)建造總費(fèi)用包括一次性鋪設(shè)建造費(fèi)用、折舊大修費(fèi)用的年折算值和泵站年運(yùn)行動(dòng)力費(fèi)用等,并考慮利率年費(fèi)的影響;管網(wǎng)供水的可靠性由節(jié)點(diǎn)富余水頭和管網(wǎng)恢復(fù)力來衡量。針對(duì)給水管網(wǎng)的優(yōu)化設(shè)計(jì)問題為復(fù)雜的多項(xiàng)式非確定性問題,按目標(biāo)函數(shù)的構(gòu)造方法可分為間接法和直接法。間接法是采用線性加權(quán)等方法將其轉(zhuǎn)化為單目標(biāo)數(shù)學(xué)模型再進(jìn)行求解,直接法是直接對(duì)多個(gè)目標(biāo)進(jìn)行求解。但在間接法中采用加權(quán)法時(shí)常常不能合理地衡量多個(gè)目標(biāo)之間的相互競(jìng)爭(zhēng)關(guān)系,為此本文采用最大最小化法將經(jīng)濟(jì)性和可靠性統(tǒng)一到[0,1]的范圍值,合理地改進(jìn)了間接法的目標(biāo)函數(shù)。為了間接法的程序?qū)崿F(xiàn),本文提出了一種新的改進(jìn)遺傳算法——育種遺傳算法,該算法通過育種算子來加強(qiáng)算法的局部搜索能力和避免陷入局部最優(yōu)。對(duì)于管網(wǎng)優(yōu)化的直接法,本文采用經(jīng)典的NSGA-Ⅱ算法來實(shí)現(xiàn),該算法基于非劣排序和精英保留等方法,在求解最優(yōu)非劣解時(shí)能得到分布均勻的Pareto最前沿的解集。本文采用MATLAB編程實(shí)現(xiàn)了管網(wǎng)優(yōu)化的兩種計(jì)算方法,通過2環(huán)管網(wǎng)模型和Hanoi管網(wǎng)模型對(duì)其合理性和有效性進(jìn)行了檢驗(yàn),并將其應(yīng)用于實(shí)際工程管網(wǎng)模型的優(yōu)化中。結(jié)果表明,在小型管網(wǎng)中兩種算法都能收斂到Pareto最優(yōu)解,但在大型管網(wǎng)中育種遺傳算法的收斂效果優(yōu)于NSGA-Ⅱ算法。此外,育種遺傳算法得到的最優(yōu)解數(shù)量較少、分布性較差,而NSGA-Ⅱ算法解的分布性更好,因此就解的分布性來說,NSGA-Ⅱ算法要優(yōu)于育種遺傳算法。
[Abstract]:In recent years, with the development of urbanization, the scale of city and the number of population are increasing day by day, and the demand for water resources is increasing, which puts forward higher requirements for the construction of urban water supply network system. Water supply network system is an important infrastructure for the survival and sustainable development of cities and towns, in which the cost of water supply network accounts for about 70-85% of the total cost of the system, and its safety and reliability is also an important guarantee for urban residents to use water. Water supply network has the characteristics of high one-time investment cost and great social significance, so it is of great significance to study the optimal design of water supply network. The main research contents and achievements of this paper are as follows: in the optimization design of traditional water supply network, there are some problems such as single objective model which only aims at economic cost, ignoring the importance of reliability guarantee and single construction scheme, etc. In this paper, a multi-objective optimization mathematical model of water supply network is established by taking the minimum annual conversion value and the maximum reliability as the objective function of the total cost of water supply network. Among them, the total cost of pipe network construction includes the one-time construction cost, the annual conversion value of the depreciation overhaul cost and the annual operating power cost of the pump station, and the influence of the interest rate annual fee is taken into account. The reliability of pipe network water supply is measured by node surplus head and pipe network recovery force. In view of the complex polynomial uncertainty problem in the optimization design of water supply network, the method of constructing objective function can be divided into indirect method and direct method. Indirect method is a linear weighting method to transform it into a single objective mathematical model to be solved, and the direct method is to solve multiple objectives directly. However, when the weighting method is used in the indirect method, it is often impossible to reasonably measure the competitive relationship between multiple objectives. In this paper, the maximum minimization method is used to unify the economy and reliability to the range of [0]. The objective function of indirect method is improved reasonably. In order to realize the program of indirect method, a new improved genetic algorithm, breeding genetic algorithm, is proposed in this paper, which strengthens the local search ability of the algorithm and avoids falling into local optimum by breeding operator. For the direct method of pipe network optimization, the classical NSGA- 鈪,
本文編號(hào):1958725
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/1958725.html
最近更新
教材專著