海流傳感器標(biāo)定裝置運(yùn)動(dòng)控制系統(tǒng)設(shè)計(jì)
本文選題:傳感器標(biāo)定 + 伺服電機(jī); 參考:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:海洋資源豐富,在人類社會(huì)迅速發(fā)展,陸地資源日益緊張的前提下,海洋資源資源開發(fā)已經(jīng)被視為社會(huì)經(jīng)濟(jì)發(fā)展的重要?jiǎng)恿。我?guó)明確提出“海洋強(qiáng)國(guó)戰(zhàn)略”,海洋開發(fā)對(duì)于我國(guó)現(xiàn)代化建設(shè)具有著重要意義。在海洋開發(fā)中,海洋觀測(cè)技術(shù)是開展海洋科學(xué)研究的基礎(chǔ)手段,其中海流測(cè)量亦是核心關(guān)鍵技術(shù)。針對(duì)微弱上升流測(cè)量難題,課題組在國(guó)家自然科學(xué)基金的資助下研制了一種新型三維海流傳感器。為實(shí)現(xiàn)對(duì)該傳感器的標(biāo)定,基于相對(duì)運(yùn)動(dòng)轉(zhuǎn)化原理設(shè)計(jì)海流傳感器標(biāo)定裝置,本文主要設(shè)計(jì)海流傳感器標(biāo)定裝置的運(yùn)動(dòng)控制系統(tǒng)。首先通過分析海流傳感器標(biāo)定需求,確定標(biāo)定裝置的功能要求與性能指標(biāo),提出標(biāo)定裝置的總體設(shè)計(jì)方案。分別在X、Y、Z三軸方向布置單軸進(jìn)給系統(tǒng),采用伺服電機(jī)+滾珠絲杠+直線導(dǎo)軌的傳動(dòng)形式實(shí)現(xiàn)標(biāo)定裝置的水平運(yùn)動(dòng)與上升運(yùn)動(dòng)。選用DSP芯片TMS320F28335作為控制系統(tǒng)核心處理器,設(shè)計(jì)D/A轉(zhuǎn)換、脈沖信號(hào)處理和串口通信等功能模塊電路,構(gòu)成DSP運(yùn)動(dòng)控制器。針對(duì)標(biāo)定裝置速度平穩(wěn)性和定位精度的實(shí)際要求,在單軸方向運(yùn)動(dòng)過程中,以伺服電機(jī)速度模式為內(nèi)環(huán),設(shè)計(jì)速度外環(huán)與位置外環(huán)相切換的控制方式,實(shí)現(xiàn)全閉環(huán)控制。速度外環(huán)采用經(jīng)典的PID控制,位置外環(huán)采用滑模變結(jié)構(gòu)控制。在TI公司提供的CCS集成開發(fā)環(huán)境下編寫DSP程序代碼,基于Labview軟件平臺(tái)完成控制系統(tǒng)上位機(jī)的開發(fā)。最后對(duì)系統(tǒng)進(jìn)行性能檢測(cè)試驗(yàn),包括硬件電路功能檢測(cè)、控制系統(tǒng)運(yùn)行測(cè)試、速度精度實(shí)驗(yàn)以及定位精度實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果表明運(yùn)動(dòng)控制系統(tǒng)達(dá)到性能要求,標(biāo)定裝置可實(shí)現(xiàn)對(duì)新型海流傳感器的標(biāo)定。
[Abstract]:With the rapid development of human society and the increasing shortage of land resources, the exploitation of marine resources has been regarded as an important driving force for social and economic development. China has put forward the "strategy of ocean power", and ocean development is of great significance to the modernization of our country. Ocean observation technology is the basic method to carry out marine scientific research in marine development, and current measurement is also the key technology. In order to solve the problem of weak upwelling measurement, a new three-dimensional current sensor was developed with the aid of the National Natural Science Foundation of China. In order to realize the calibration of the sensor, the calibration device of the current sensor is designed based on the principle of relative motion transformation. The motion control system of the calibration device of the current sensor is designed in this paper. Firstly, by analyzing the calibration requirements of ocean current sensor, the functional requirements and performance indexes of the calibration device are determined, and the overall design scheme of the calibration device is proposed. The single-axis feed system is arranged in the three axis direction of XNY Z, and the horizontal movement and the rising motion of the calibration device are realized by using the drive form of the linear guide rail of the ball screw of the servo motor. The DSP chip TMS320F28335 is selected as the core processor of the control system. The function modules such as D / A conversion, pulse signal processing and serial port communication are designed to form the DSP motion controller. According to the requirements of the speed stability and positioning accuracy of the calibration device, in the process of uniaxial movement, the speed mode of servo motor is used as the inner loop, and the control mode of switching between the speed outer loop and the position outer loop is designed to realize the full closed loop control. The velocity outer loop is controlled by classical PID and the position outer loop by sliding mode variable structure control. In the CCS integrated development environment provided by TI company, the DSP program code is written, and the host computer of the control system is developed based on the Labview software platform. Finally, the performance test of the system is carried out, including hardware circuit function test, control system running test, speed precision experiment and positioning precision experiment. The experimental results show that the motion control system meets the performance requirements and the calibration device can realize the calibration of the new current sensor.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 范寒柏;李瑞琪;趙文成;陳紹權(quán);;點(diǎn)式聲學(xué)多普勒海流計(jì)研究設(shè)計(jì)[J];儀表技術(shù)與傳感器;2015年11期
2 劉昕;邊澤強(qiáng);李松奎;;自動(dòng)氣象站風(fēng)向風(fēng)速儀現(xiàn)場(chǎng)校準(zhǔn)方法研究[J];計(jì)量與測(cè)試技術(shù);2015年08期
3 張德福;葛川;李顯凌;倪明陽(yáng);郭抗;李朋志;;高精度位移傳感器線性度標(biāo)定方法研究[J];儀器儀表學(xué)報(bào);2015年05期
4 袁媛;李崇銀;楊崧;;與厄爾尼諾和拉尼娜相聯(lián)系的中國(guó)南方冬季降水的年代際異常特征[J];氣象學(xué)報(bào);2014年02期
5 何偉銘;蔣超偉;井原透;甘屹;朱堅(jiān)民;;高精度傳感器標(biāo)定曲線的預(yù)測(cè)擬合[J];傳感技術(shù)學(xué)報(bào);2013年11期
6 姚建濤;李立建;許允斗;趙永生;;超靜定六維力傳感器靜定測(cè)量模型及標(biāo)定方法[J];儀器儀表學(xué)報(bào);2013年09期
7 周向陽(yáng);趙強(qiáng);;航空遙感三軸慣性穩(wěn)定平臺(tái)雙速度環(huán)控制[J];中國(guó)慣性技術(shù)學(xué)報(bào);2013年04期
8 孫魯峰;柯昶;徐兆禮;闕江龍;田豐歌;;上升流和水團(tuán)對(duì)浙江中部近海浮游動(dòng)物生態(tài)類群分布的影響[J];生態(tài)學(xué)報(bào);2013年06期
9 溫海明;;海洋資源開發(fā)利用與環(huán)境可持續(xù)發(fā)展問題研究[J];綠色科技;2012年10期
10 梁捷;;海洋觀測(cè)技術(shù)[J];聲學(xué)技術(shù);2012年01期
,本文編號(hào):1910600
本文鏈接:http://www.lk138.cn/kejilunwen/zidonghuakongzhilunwen/1910600.html