中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當前位置:主頁 > 科技論文 > 信息工程論文 >

面向運動想象康復訓練的腦機交互系統(tǒng)研發(fā)

發(fā)布時間:2019-03-21 07:22
【摘要】:運動想象(Motor Imagery,MI)訓練是一種新型康復訓練方法。本文借助腦機交互系統(tǒng),通過神經(jīng)反饋的方式,對其增強MI康復訓練效果進行探索。本文首先提出一種MI康復訓練腦機交互系統(tǒng)框架,再就MI腦電信號(Electroencephal ogra-m,EEG)的眼電偽跡(Ocular Artifact,OA)去除算法、特征提取算法以及分類算法的編程實現(xiàn)進行研究,并構(gòu)建相應功能模塊,組成在線MI康復訓練腦機交互系統(tǒng),并就有無神經(jīng)反饋的情況下,MI訓練的效果作對比研究,對所研發(fā)系統(tǒng)的有效性進行驗證。本文的主要研究內(nèi)容可分為以下5個方面:(1)本文介紹了系統(tǒng)的基本概念、系統(tǒng)的組成以及國內(nèi)外的研究現(xiàn)狀,并分析目前該類系統(tǒng)研究中的關鍵技術難題。同時,了解人腦的結(jié)構(gòu)與EEG產(chǎn)生的機理以及MI過程中EEG具有的事件相關去同步/同步(Event-Related Desynchr-onization/Synchronization,ERD/ERS)現(xiàn)象,以此作研究的理論支撐。(2)提出系統(tǒng)的總體架構(gòu)以及各模塊應具備的功能,并設計EEG采集方案,介紹采集所需的實驗設備和實驗對象,并提出實驗中需要注意的要點,最后記錄實驗中具體采集情況。(3)提出一種自動去除OA的方法:首先將水平和垂直眼電(ElectroOculogram,EOG)信號按一定比例混疊成一導新的信號,與EEG一起通過改進獨立分量分析(Improved Independent Component Analysis,IICA)算法獲取各導信號的獨立分量,再利用相關系數(shù)自動識別并去除混疊信號獨立分量,最后通過ICA逆變換獲取純凈EEG。(4)EEG的特征提取與分類研究分二個方面展開:先由小波變換獲取EEG的小波能量,再計算相對小波能量作為特征;再構(gòu)建Logistic分類器對特征進行分類。(5)完成EEG在線分析處理功能,與神經(jīng)反饋功能,實現(xiàn)系統(tǒng)整體構(gòu)建。最終,該系統(tǒng)既能分析已保存的EEG,又能在線實時處理EEG,并將處理結(jié)果轉(zhuǎn)換成控制信號,完成虛擬人體模型的控制,反饋用戶MI狀態(tài)。在線實驗結(jié)果表明該系統(tǒng)能輔助受試者更有效地進行MI,從而提升康復訓練效果。
[Abstract]:Motor imagination (Motor Imagery,MI) training is a new method of rehabilitation training. In this paper, with the help of brain-computer interaction system, through the way of neural feedback, we explore how to enhance the effect of MI rehabilitation training. In this paper, we first propose a framework of brain-computer interaction system for MI rehabilitation training, and then study the MI EEG signal (Electroencephal ogra-m,EEG) eye artifact (Ocular Artifact,OA) removal algorithm, feature extraction algorithm and the programming implementation of classification algorithm. The corresponding functional modules are constructed to form a brain-computer interactive system for online MI rehabilitation training. The effects of MI training are compared with or without neural feedback, and the validity of the developed system is verified. The main contents of this paper can be divided into the following five aspects: (1) this paper introduces the basic concept of the system, the composition of the system and the research status at home and abroad, and analyzes the key technical problems in the current research of this kind of system. At the same time, we understand the structure of the human brain and the mechanism of EEG generation and the event-related desynchronization / synchronization (Event-Related Desynchr-onization/Synchronization,ERD/ERS) phenomenon of EEG in the process of MI. (2) the overall architecture of the system and the functions of each module are proposed, and the EEG acquisition scheme is designed, the experimental equipment and objects required for the collection are introduced, and the main points needing attention in the experiment are put forward, and the main points for attention in the experiment are put forward, and the main points to be paid attention to in the experiment are put forward. Finally, the specific data collected in the experiment are recorded. (3) an automatic method of removing OA is proposed: firstly, the horizontal and vertical ElectroOculogram,EOG signals are mixed into a new signal in a certain proportion. Together with EEG, an improved Independent component Analysis (Improved Independent Component Analysis,IICA) algorithm is used to obtain the independent components of each derived signal, and then the correlation coefficient is used to automatically identify and remove the independent components of the aliasing signals. Finally, the feature extraction and classification of pure EEG. (4) EEG obtained by inverse ICA transform are divided into two aspects: firstly, the wavelet energy of EEG is obtained by wavelet transform, and then the relative wavelet energy is calculated as the feature; Then the Logistic classifier is constructed to classify the features. (5) the function of on-line analysis and processing of EEG and the function of neural feedback are completed to realize the overall construction of the system. Finally, the system can not only analyze the saved EEG, but also process the EEG, in real time on line and convert the processing results into control signals. The virtual human model can be controlled and the user's MI status can be fed back. The results of on-line experiments show that the system can help the subjects to carry out MI, more effectively and improve the effect of rehabilitation training.
【學位授予單位】:杭州電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R318.0;TN911.7

【參考文獻】

中國期刊全文數(shù)據(jù)庫 前10條

1 劉瓏;李勝;;基于快速獨立分量分析的腦電波信號降噪[J];計算機測量與控制;2014年11期

2 羅志增;周鎮(zhèn)定;周瑛;何海洋;;雙樹復小波特征在運動想象腦電識別中的應用[J];傳感技術學報;2014年05期

3 李明愛;崔燕;楊金福;;腦電信號中眼電偽跡自動去除方法的研究[J];電子學報;2013年06期

4 劉小燮;畢勝;高小榕;楊志;閆錚;寇程;馬林;高上凱;;基于運動想象的腦機交互康復訓練新技術對腦卒中大腦可塑性影響[J];中國康復醫(yī)學雜志;2013年02期

5 鄭舟軍;劉曉虹;張麗平;戎燕;龔戩芳;劉文琴;;腦卒中患者自我效能水平與其肢體功能康復進程的相關研究[J];中華護理雜志;2012年05期

6 趙大慶;王俊;;小波多重分形在腦電信號分析中的應用[J];中國生物醫(yī)學工程學報;2010年05期

7 李明愛;王蕊;郝冬梅;;想象左右手運動的腦電特征提取及分類研究[J];中國生物醫(yī)學工程學報;2009年02期

8 李明愛;劉凈瑜;郝冬梅;;基于改進CSP算法的運動想象腦電信號識別方法[J];中國生物醫(yī)學工程學報;2009年02期

9 謝松云;張振中;張偉平;趙海濤;;基于ICA的腦電信號去噪方法研究與應用[J];中國醫(yī)學影像技術;2007年10期

10 楊幫華;顏國正;鄢波;;基于離散小波變換提取腦機接口中腦電特征[J];中國生物醫(yī)學工程學報;2006年05期

中國碩士學位論文全文數(shù)據(jù)庫 前1條

1 昌鳳玲;多類運動想象腦電模式識別及其在電動輪椅控制上的應用[D];杭州電子科技大學;2014年

,

本文編號:2444716

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/xinxigongchenglunwen/2444716.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶49669***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com