三維地震地質(zhì)建模方法在B區(qū)的應(yīng)用研究
本文選題:三維地質(zhì)模型 + Kriging插值; 參考:《中國(guó)地質(zhì)大學(xué)(北京)》2017年碩士論文
【摘要】:三維地震地質(zhì)模型主要通過(guò)地球物理勘探數(shù)據(jù)和現(xiàn)代可視化技術(shù)建立,具有成像精度高、空間性強(qiáng)及能反映真實(shí)地下情況的特點(diǎn)。地質(zhì)模型可以在進(jìn)行地震處理及分析方面極大地減輕工作量,同時(shí)對(duì)地下儲(chǔ)層參數(shù)分布進(jìn)行更加量化、精確地描述,因此在石油勘探領(lǐng)域具有廣泛的應(yīng)用。B區(qū)位于BN油田西部,具有優(yōu)越的成藏條件和儲(chǔ)集性能,但其開發(fā)難點(diǎn)是如何尋找越來(lái)越隱蔽的油氣藏,而簡(jiǎn)單地提高地震采樣密度會(huì)造成投入浪費(fèi)。故需要進(jìn)行觀測(cè)系統(tǒng)參數(shù)與地質(zhì)特征敏感性分析,而建立研究區(qū)的三維地質(zhì)模型,對(duì)敏感性研究具有理論指導(dǎo)意義。論文通過(guò)對(duì)研究區(qū)概況以及地震、測(cè)井和地質(zhì)資料進(jìn)行分析,首先利用Kriging插值算法建立常規(guī)地質(zhì)模型。即通過(guò)地震解釋層位做橫向約束,以地質(zhì)和測(cè)井相關(guān)資料作縱向上控制,進(jìn)行內(nèi)插外推得到地質(zhì)模型。此常規(guī)建模方法存在研究區(qū)地質(zhì)復(fù)雜情況下模型精度不高的問(wèn)題。在常規(guī)地質(zhì)模型基礎(chǔ)上,利用地震資料具有反映地下空間分布的中頻信息特點(diǎn),通過(guò)地震數(shù)據(jù)對(duì)常規(guī)模型進(jìn)行約束反演,并將生成的波阻抗數(shù)據(jù)體擬合出模型所需信息,最終合成常規(guī)和擬合后的模型得到優(yōu)化三維地質(zhì)模型。優(yōu)化建模方法可以減小層位解釋誤差對(duì)建模的影響,處理后的模型精度變高,并能反映復(fù)雜地層和構(gòu)造精細(xì)變化。對(duì)構(gòu)建的優(yōu)化三維地質(zhì)模型進(jìn)行多維度定性與定量評(píng)價(jià)分析,包括地震數(shù)據(jù)匹配性、測(cè)井曲線吻合度、斷面識(shí)別、屬性平面特征及正演模擬單炮分析等。構(gòu)建的優(yōu)化地質(zhì)模型能精確地反映地下空間展布和復(fù)雜構(gòu)造情況,符合進(jìn)行后續(xù)退化處理和解釋評(píng)價(jià)的要求,對(duì)進(jìn)行觀測(cè)系統(tǒng)參數(shù)與地質(zhì)特征敏感性分析研究提供了理論指導(dǎo)和基礎(chǔ)。
[Abstract]:The 3D seismic geological model is mainly established by geophysical exploration data and modern visualization technology. It has the characteristics of high imaging accuracy, strong spatial and can reflect the real underground situation. The geological model can greatly reduce the workload in seismic processing and analysis, and at the same time, the distribution of underground reservoir parameters can be more quantified and accurately described. Therefore, area B is widely used in the field of oil exploration in the western part of BN oilfield. It has excellent reservoir forming conditions and reservoir performance, but the difficulty of its development is how to find more and more subtle oil and gas reservoirs, and simply increasing seismic sampling density will cause waste of investment. Therefore, it is necessary to analyze the sensitivity of observation system parameters and geological characteristics, and the establishment of three-dimensional geological model in the study area is of theoretical significance to the sensitivity study. Based on the analysis of the general situation of the study area and seismic, logging and geological data, the conventional geological model is established by using the Kriging interpolation algorithm. The geological model is obtained by using seismic interpretation horizon as horizontal constraint and geological and logging data as longitudinal control and extrapolation. This conventional modeling method has the problem that the model accuracy is not high under the complicated geological conditions in the study area. On the basis of the conventional geological model, using seismic data with the characteristics of intermediate frequency information reflecting the distribution of underground space, the conventional model is inversed by seismic data, and the generated wave impedance data body is fitted to the information needed by the model. Finally, the conventional and fitted models are synthesized to obtain the optimized three-dimensional geological model. The optimized modeling method can reduce the influence of the horizon interpretation error on the modeling, and the precision of the model after processing becomes higher, and it can reflect the fine changes of complex strata and structures. The multi-dimensional qualitative and quantitative evaluation and analysis of the optimized 3D geological model are carried out, including seismic data matching, log curve coincidence, section identification, attribute plane characteristics and forward simulation single shot analysis, and so on. The optimized geological model can accurately reflect the distribution of underground space and complex structures and meet the requirements of subsequent degradation treatment and interpretation and evaluation. It provides theoretical guidance and foundation for the sensitivity analysis of observation system parameters and geological characteristics.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P631.4
【參考文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前10條
1 陳玲俠;張軍利;;基于三角剖分的空間數(shù)據(jù)插值方法[J];自動(dòng)化與儀器儀表;2016年10期
2 石莉莉;;基于地震資料的薄互層儲(chǔ)層精細(xì)地質(zhì)建模[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自科版);2016年01期
3 胡偉;鄒艷紅;郭文江;;基于Kriging方法的三維地質(zhì)體空間插值與可視化[J];科技傳播;2015年06期
4 范洪軍;胡光義;王暉;汪珍宇;;三維地震在儲(chǔ)層巖相隨機(jī)建模中的應(yīng)用[J];山東化工;2013年04期
5 肖佃師;盧雙舫;陳海峰;陸延平;李占東;周娟;;基于頻譜分解的測(cè)井曲線標(biāo)準(zhǔn)化方法[J];石油與天然氣地質(zhì);2013年01期
6 徐延勇;鄒冠貴;曹文彥;趙斯諾;;測(cè)井曲線標(biāo)準(zhǔn)化方法對(duì)比研究及應(yīng)用[J];中國(guó)煤炭地質(zhì);2013年01期
7 胡勇;陳恭洋;周艷麗;;地震反演資料在相控儲(chǔ)層建模中的應(yīng)用[J];油氣地球物理;2011年02期
8 肖娟;;地震資料在三維地質(zhì)建模中的應(yīng)用[J];油氣地球物理;2011年01期
9 張露;楊永國(guó);姚松均;;基于ArcGIS的GDP空間插值方法比較分析[J];科技致富向?qū)?2010年17期
10 趙延靜;林承焰;;基于地震資料的多條件約束地質(zhì)建模[J];石油工業(yè)計(jì)算機(jī)應(yīng)用;2010年02期
中國(guó)博士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 羅水亮;扇三角洲相儲(chǔ)層開發(fā)中后期剩余油分布規(guī)律研究[D];中國(guó)石油大學(xué);2009年
中國(guó)碩士學(xué)位論文全文數(shù)據(jù)庫(kù) 前1條
1 周星合;地質(zhì)模型創(chuàng)建及地震采集設(shè)計(jì)中地震波照明度模擬與分析研究[D];西南石油大學(xué);2006年
,本文編號(hào):1838711
本文鏈接:http://www.lk138.cn/kejilunwen/kuangye/1838711.html