滾動軸承故障非接觸多傳感器聲信號融合及診斷技術研究
本文關鍵詞:滾動軸承故障非接觸多傳感器聲信號融合及診斷技術研究 出處:《東北石油大學》2012年碩士論文 論文類型:學位論文
更多相關文章: 聲發(fā)射 滾動軸承 故障診斷 非接觸 多傳感器融合
【摘要】:滾動軸承是各工業(yè)領域的基本元件,在各類機械設備中扮演著重要的角色。滾動軸承的故障診斷方法有很多種,如紅外軸溫探測法、振動信號分析法、潤滑油液分析法等,這些方法各具特色,都能夠?qū)ΤR姷臐L動軸承故障類型做出有效判斷。但這些方法由于自身特點及使用環(huán)境的限制,都不能有效地診斷滾動軸承早期故障。另外,在役滾動軸承往往處于移動狀態(tài),移動中滾動軸承運行狀態(tài)的監(jiān)測是各工業(yè)領域的技術難題。為了保證機械設備安全、平穩(wěn)的運行,降低事故的發(fā)生率,本文研究了基于周期性非接觸聲發(fā)射信號的滾動軸承故障診斷方法,目的在于完善滾動軸承故障診斷技術,為滾動軸承狀態(tài)監(jiān)測奠定基礎。 搭建了滾動軸承故障非接觸多傳感器聲發(fā)射檢測試驗臺,對移動中帶有滾動體、內(nèi)圈、外圈故障的滾動軸承,分別進行了不同轉速、不同移動速度的故障聲發(fā)射信號采集。研究了形態(tài)學濾波技術,根據(jù)滾動軸承各類故障聲發(fā)射信號的特點,找到了合適的結構元素并對各組試驗數(shù)據(jù)進行了形態(tài)學濾波處理,剔除了低頻、高頻噪聲等干擾信息,為后續(xù)數(shù)據(jù)分析掃清了障礙。 針對多傳感器采集時信號重疊和不完整問題,根據(jù)聲發(fā)射撞擊信號時差和傳感器陣列幾何關系建立同聲源信號判別公式,以及多傳感器同聲源信號融合算法,對各組試驗信號進行了辨識融合處理,處理結果表明融合信號與故障源信號的相似程度高于各同聲源信號。 提出了基于周期性聲發(fā)射撞擊計數(shù)的滾動軸承故障診斷方法和基于周期性聲信號特征參數(shù)的滾動軸承故障診斷方法。前者利用滾動軸承故障融合信號的數(shù)量與聲發(fā)射累計撞擊計數(shù)的對應關系診斷滾動軸承故障;后者通過計算滾動軸承故障周期性聲信號的波形特征參數(shù)診斷滾動軸承故障。診斷結果表明前者在小周期測試時精確度較高,多周期測試時存在一定的誤差,但在可承受范圍以內(nèi);后者由于是對周期性聲信號進行處理,排除了個別非故障源信號的干擾,因而具有較高的準確率。兩種方法均可用于滾動軸承早期故障判斷,并有效區(qū)分故障類型。
[Abstract]:The rolling bearing is the basic element of various industries, plays an important role in all kinds of mechanical equipment. There are many kinds of fault diagnosis method of rolling bearing, such as infrared axle temperature detection method, vibration signal analysis method, the lubricating oil analysis method etc. these methods have their own characteristics, are able to make effective judgment on rolling bearing fault common types. But these methods because of its own characteristics and the use of environmental constraints, can effectively diagnose the incipient fault of rolling bearing. In addition, in the service of rolling bearings are often in a mobile state, monitoring the running state of rolling bearing movement is a technical problem in various industrial fields. In order to ensure the safety of machinery and equipment running smoothly. Reduce the incidence of accidents, this paper studied the periodic non contact fault diagnosis method of rolling bearing based on acoustic emission signal, in order to improve the fault diagnosis of rolling bearing off technology for The foundation of rolling bearing state monitoring is laid.
Build a rolling bearing fault of non contacting sensor acoustic emission testing bench, to move with the rolling body, the inner ring, the outer ring of the rolling bearing fault, respectively, different speed, different moving speed of fault acoustic emission signal acquisition. Research on the morphological filtering technology, according to the characteristics of rolling bearing faults of AE signal, find the appropriate structural elements and each group of test data were studied by morphological filtering, eliminating low frequency, high frequency noise and other interference information for subsequent data analysis to clear the obstacle.
According to the multi sensor signal overlap and incomplete problems, according to the acoustic emission signal and time impact sensor array geometry simultaneous source signal discrimination formula is set up, and the multi-sensor fusion algorithm for simultaneous signals, each test signal identification of fusion processing results show that the degree of similarity fusion signal and fault source signal is higher than the simultaneous the source of the signal.
The cumulative impact count of acoustic emission of the rolling bearing fault diagnosis method and fault diagnosis method of rolling bearing cyclic acoustic signals based on characteristic parameters. Based on the former by the number of fusion signals and the acoustic emissioncumulative impact rolling bearing fault count the corresponding relationship between the fault diagnosis of rolling bearing; the latter through the calculation of rolling bearing fault diagnosis waveform characteristic parameters of bearing periodic fault acoustic signal of rolling. The diagnosis results show that the former higher accuracy in a few period test, there are some errors in multi period test, but within the acceptable range; because the latter is the processing of periodic acoustic signal, eliminate the interference of individual non fault source signals, so it has high accuracy. The two methods can be used for rolling bearing early faults judgment, and distinguish fault types.
【學位授予單位】:東北石油大學
【學位級別】:碩士
【學位授予年份】:2012
【分類號】:TH133.33;TH165.3
【參考文獻】
相關期刊論文 前10條
1 徐振輝,馬立元;滾動軸承的故障特征提取[J];兵工自動化;2004年01期
2 理華,徐春廣,肖定國,黃卉,鄭軍,季皖東,郭浩;滾動軸承聲發(fā)射檢測技術[J];軸承;2002年07期
3 張習加;李成群;;聲發(fā)射技術在鐵路機車輪對軸承故障診斷中的應用[J];軸承;2007年06期
4 郝如江;盧文秀;褚福磊;;形態(tài)濾波在滾動軸承故障聲發(fā)射信號處理中的應用[J];清華大學學報(自然科學版);2008年05期
5 陳汶濱;楊洋;彭博;崔春;;基于自適應柔性形態(tài)學邊緣檢測算法研究[J];計算機工程與設計;2010年11期
6 董然;師衛(wèi);;基于邊緣檢測和形態(tài)學處理的車牌定位[J];機械工程與自動化;2010年06期
7 劉瑞揚,張運剛,李百泉;貨車滾動軸承早期故障軌邊聲學診斷系統(tǒng)(TADS)的原理與應用[J];鐵道車輛;2004年10期
8 李曉飛;馬大瑋;范小麟;胡焰智;;基于數(shù)學形態(tài)學的遙感圖像多感興趣區(qū)域提取[J];計算機技術與發(fā)展;2007年12期
9 李鳳英;沈玉娣;熊軍;;滾動軸承故障的聲發(fā)射檢測技術[J];無損檢測;2005年11期
10 鐘建強;柳穎;楊娟;王漢功;;利用聲發(fā)射技術檢測儲罐的腐蝕損傷狀態(tài)[J];無損檢測;2011年11期
相關博士學位論文 前1條
1 于江林;滾動軸承故障的非接觸聲學檢測信號特性及重構技術研究[D];大慶石油學院;2009年
相關碩士學位論文 前7條
1 代巍;嘈雜背景下的AE信號提取技術研究[D];遼寧工程技術大學;2009年
2 楊黎明;聲發(fā)射技術用于段修貨車軸承故障診斷研究[D];西南交通大學;2003年
3 張新明;聲發(fā)射技術在滾動軸承故障診斷中的應用[D];清華大學;2006年
4 王美波;基于聲學方法的滾動軸承故障信號分析方法研究[D];大慶石油學院;2008年
5 趙佳萌;基于聲信號小波變換的滾動軸承故障診斷[D];北京交通大學;2009年
6 余永增;基于小波和EMD的滾動軸承非接觸聲學診斷方法研究[D];大慶石油學院;2009年
7 汪雪;非接觸多傳感器聲學檢測信號分析及識別技術研究[D];大慶石油學院;2010年
,本文編號:1384624
本文鏈接:http://www.lk138.cn/kejilunwen/jixiegongcheng/1384624.html