雙向漸進結(jié)構(gòu)拓撲優(yōu)化方法的改進及應(yīng)用
本文關(guān)鍵詞:雙向漸進結(jié)構(gòu)拓撲優(yōu)化方法的改進及應(yīng)用 出處:《哈爾濱工程大學(xué)》2012年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 拓撲優(yōu)化 雙向漸進結(jié)構(gòu)優(yōu)化方法 多目標優(yōu)化 阻尼減振
【摘要】:隨著拓撲優(yōu)化在結(jié)構(gòu)設(shè)計在初始階段中體現(xiàn)出來的創(chuàng)新性受到越來越多的認可,,結(jié)構(gòu)拓撲優(yōu)化成為了結(jié)構(gòu)優(yōu)化設(shè)計領(lǐng)域的熱點研究對象。與尺寸優(yōu)化和形狀優(yōu)化等優(yōu)化方法相比,結(jié)構(gòu)拓撲優(yōu)化在結(jié)構(gòu)設(shè)計之初就能給設(shè)計者一個不需要任何工程經(jīng)驗的概念設(shè)計,對工程設(shè)計人員更具吸引力。進行連續(xù)體結(jié)構(gòu)的拓撲優(yōu)化數(shù)學(xué)模型建立有多種方式,涉及的變量較多,同時又各具優(yōu)缺點,使得拓撲優(yōu)化的工程應(yīng)用未能普及。本文研究的雙向漸進結(jié)構(gòu)優(yōu)化方法(簡稱BESO方法)具有算法簡單、與有限元分析程序連接容易等優(yōu)點,在結(jié)構(gòu)拓撲優(yōu)化中的應(yīng)用越來越廣。本文以連續(xù)體結(jié)構(gòu)為研究對象,對雙向漸進結(jié)構(gòu)拓撲優(yōu)化方法與應(yīng)用進行討論,通過對其進行改進以提高其合理性、通用性以及工程實際應(yīng)用能力。 本文首先針對現(xiàn)階段的漸進結(jié)構(gòu)拓撲優(yōu)化方法,總結(jié)歸納其在應(yīng)用中遇到的各類常見問題及解決方法,通過分析這些方法的優(yōu)缺點,提出了基于遺傳算法思想并結(jié)合網(wǎng)格過濾技術(shù)的改進方法,避免了拓撲優(yōu)化常見的“棋盤格”、網(wǎng)格依賴性及進入局部最優(yōu)解現(xiàn)象。從提高材料利用率的角度出發(fā),分別建立了以柔順性為目標函數(shù)的結(jié)構(gòu)強度拓撲優(yōu)化及基于模態(tài)靈敏度排序的模態(tài)頻率最大化結(jié)構(gòu)拓撲優(yōu)化數(shù)學(xué)模型。通過Matlab編程實現(xiàn)了BESO方法的改進,以經(jīng)典懸臂梁及“Michell”結(jié)構(gòu)驗證了本文提出改進方法的改進效果,同時對比目前通用的變密度拓撲優(yōu)化方法驗證了本文方法的優(yōu)點。 其次,因為工程實際中往往需要考慮強度,剛度,穩(wěn)定性,模態(tài)等多種要求,本文對同時考慮應(yīng)力和位移約束、模態(tài)和位移的多約束優(yōu)化問題進行了研究。采用拉格朗日乘子法,分別以結(jié)構(gòu)柔順性均勻及模態(tài)頻率最大化為目標函數(shù),建立相應(yīng)的多約束單元靈敏度值計算數(shù)學(xué)模型。 第三,以高性能的有限元分析軟件HyperWorks為平臺,結(jié)合TCL與C語言進行軟件二次開發(fā)。通過模塊化編程操作將改進后的BESO方法在HyperWorks中實現(xiàn),包括求解模型的前處理、BESO方法求解迭代曲線的同步顯示、曲線編輯、結(jié)果后處理等,提高了該方法的通用性。 最后針對結(jié)構(gòu)粘附阻尼減振技術(shù),結(jié)合BESO方法,提出一種適用于船舶中的大量板結(jié)構(gòu)粘附阻尼材料減振時確定阻尼材料粘貼位置的方法。通過在一塊兩端約束的簡單板結(jié)構(gòu)中應(yīng)用該方法驗證了該方法的正確性,可以在工程實踐中推廣該方法。
[Abstract]:With the topology optimization in the initial stage of structural design reflected in the innovation is more and more recognized. Structural topology optimization has become a hot research object in the field of structural optimization design, compared with the optimization methods such as dimension optimization and shape optimization. Structural topology optimization can give designers a concept design without any engineering experience at the beginning of structural design. It is more attractive to engineers and designers. There are many ways to establish the mathematical model of topology optimization of continuum structure, which involve many variables, and at the same time, each has its own advantages and disadvantages. The bi-directional asymptotic structural optimization (BESO) method studied in this paper has the advantages of simple algorithm and easy connection with finite element analysis program. In this paper, taking continuum structure as the research object, the method and application of bi-directional asymptotic structural topology optimization are discussed, and the rationality of the method is improved by improving it. Generality and engineering practical application ability. In this paper, aiming at the current evolutionary topology optimization methods, we summarize the common problems and solutions encountered in its application, and analyze the advantages and disadvantages of these methods. An improved method based on genetic algorithm and mesh filtering technology is proposed to avoid the "checkerboard" commonly used in topology optimization. The phenomenon of grid dependence and local optimal solution is obtained from the point of view of improving the material utilization ratio. The mathematical models of structural strength topology optimization based on flexibility as objective function and modal frequency maximization structural topology optimization model based on modal sensitivity ranking are established respectively. The BESO square is realized by Matlab programming. The improvement of law. The improved method is verified by classical cantilever beam and "Michell" structure, and the advantages of this method are verified by comparing with the current general variable density topology optimization method. Secondly, because the strength, stiffness, stability, mode and other requirements are often considered in engineering practice, the stress and displacement constraints are considered in this paper. The multi-constraint optimization problem of modes and displacements is studied. The Lagrange multiplier method is adopted, and the objective functions are the uniformity of structural compliance and the maximization of modal frequency, respectively. A mathematical model for calculating the sensitivity value of multi-constrained elements is established. Third, take the high performance finite element analysis software HyperWorks as the platform. Combined with TCL and C language, the software is redeveloped. The improved BESO method is implemented in HyperWorks by modular programming operation, including the pre-processing of solving the model. The BESO method is used to solve the synchronous display of iterative curves, curve editing and post-processing of the results, which improves the generality of the method. Finally, the BESO method is used to reduce the vibration of the structure with adhesive damping. This paper presents a method for determining the position of damping material when a large number of plate structures in ships are attached to damping materials to reduce vibration. The correctness of the method is verified by applying this method to a simple plate structure with two ends of constraints. . This method can be popularized in engineering practice.
【學(xué)位授予單位】:哈爾濱工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2012
【分類號】:TH122
【參考文獻】
相關(guān)期刊論文 前10條
1 楊德慶,柳擁軍,金咸定;薄板減振降噪的拓撲優(yōu)化設(shè)計方法[J];船舶力學(xué);2003年05期
2 申志彬;李磊;段靜波;唐國金;;基于Patran二次開發(fā)的固體發(fā)動機結(jié)構(gòu)分析系統(tǒng)[J];固體火箭技術(shù);2011年02期
3 彭細榮;隋允康;;有頻率禁區(qū)的連續(xù)體結(jié)構(gòu)拓撲優(yōu)化[J];固體力學(xué)學(xué)報;2007年02期
4 陳敬華;;拉格朗日乘子法及其推廣[J];湖北師范學(xué)院學(xué)報(自然科學(xué)版);2010年04期
5 宋鋒;溫衛(wèi)東;崔海濤;;基于改進蟻群算法的結(jié)構(gòu)形狀優(yōu)化[J];航空學(xué)報;2007年05期
6 彭公孚,席長友;基于VB控件開發(fā)的ANSYS程序調(diào)用方法[J];武漢理工大學(xué)學(xué)報(交通科學(xué)與工程版);2004年01期
7 吳克恭,閆云聚,姜節(jié)勝;剛架與板組合結(jié)構(gòu)動力學(xué)形狀優(yōu)化研究[J];機械科學(xué)與技術(shù);2000年S1期
8 朱繼宏,張衛(wèi)紅,田軍,鄧揚晨,邱克鵬;基于連續(xù)密度變量的結(jié)構(gòu)支撐布局優(yōu)化設(shè)計[J];機械科學(xué)與技術(shù);2004年09期
9 左孔天,王書亭,陳立平,張云清,鐘毅芳;拓撲優(yōu)化中去除數(shù)值不穩(wěn)定性的算法研究[J];機械科學(xué)與技術(shù);2005年01期
10 顧松年,徐斌,榮見華,姜節(jié)勝;結(jié)構(gòu)動力學(xué)設(shè)計優(yōu)化方法的新進展[J];機械強度;2005年02期
相關(guān)博士學(xué)位論文 前3條
1 榮見華;漸進結(jié)構(gòu)優(yōu)化方法及其應(yīng)用研究[D];國防科學(xué)技術(shù)大學(xué);2006年
2 賀丹;漸進結(jié)構(gòu)優(yōu)化方法的改進策略及應(yīng)用[D];大連理工大學(xué);2008年
3 宋宗鳳;不確定性連續(xù)體結(jié)構(gòu)的拓撲優(yōu)化設(shè)計研究[D];西安電子科技大學(xué);2009年
相關(guān)碩士學(xué)位論文 前3條
1 俞黎明;減速器箱體阻尼減振研究[D];哈爾濱工程大學(xué);2010年
2 高玉磊;模型選擇:推廣的拉格朗日乘子法[D];大連理工大學(xué);2010年
3 武涵;微硬盤驅(qū)動臂的拓撲優(yōu)化設(shè)計[D];哈爾濱工程大學(xué);2011年
本文編號:1382666
本文鏈接:http://www.lk138.cn/kejilunwen/jixiegongcheng/1382666.html