中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 科技論文 > 化學(xué)論文 >

釩酸鐵、鉬酸鐵和釩酸鎘摻雜石墨相氮化碳材料的光催化性能研究

發(fā)布時(shí)間:2019-02-11 09:42
【摘要】:自上世紀(jì)七十年代以來(lái),半導(dǎo)體光催化技術(shù)備受科學(xué)研究者的青睞。出于充分利用太陽(yáng)能的需要,科學(xué)家把可見光響應(yīng)光催化劑材料的研發(fā)作為光催化材料發(fā)展的首要問(wèn)題。g-C3N4是近年來(lái)報(bào)道一種新型的有機(jī)聚合物半導(dǎo)體,具有可響應(yīng)可見光,化學(xué)與熱穩(wěn)定性好、無(wú)毒且制備簡(jiǎn)易等優(yōu)點(diǎn),受到全世界科研究人員的關(guān)注,應(yīng)用前景廣闊。本論文主要是以g-C3N4基礎(chǔ),通過(guò)釩酸鐵、鉬酸鐵和釩酸鎘的修飾來(lái)改性g-C3N4,從而獲得了三種高效的可見光響應(yīng)光催化劑。首先,采用簡(jiǎn)單的水熱和研磨焙燒法制備出可響應(yīng)可見光的FeVO4/g-C3N4復(fù)合型光催化劑。通過(guò)對(duì)復(fù)合催化劑進(jìn)行一系列的表征,得出其光催化反應(yīng)的機(jī)理。由諸多表征的結(jié)果我們可以得到結(jié)論,即催化劑活性的增加的根本原因是FeVO4/g-C3N4之間形成了異質(zhì)結(jié),抑制光生電子-空穴對(duì)的復(fù)合。而且,FeVO4/g-C3N4摻雜含量是影響催化劑活性的一個(gè)重要因素,其中當(dāng)FeVO4實(shí)際含量為5.0wt%時(shí),該復(fù)合催化劑的催化活性最高。其次,采用研磨-焙燒法制備了g-C3N4/Fe2(MoO4)3復(fù)合相催化劑,該催化劑對(duì)可見光有很好的響應(yīng),可吸收波長(zhǎng)小于560nm的可見光。在可見光下表現(xiàn)出極好的催化效果,其中10.6wt%g-C3N4/Fe2(MoO4)3的催化效果最佳,根本原因是g-C3N4和Fe2(MoO4)3具有匹配的能帶結(jié)構(gòu),可構(gòu)成異質(zhì)結(jié)結(jié)構(gòu)提高了電子和空穴的分離效率,延長(zhǎng)了載流子的壽命,從而提高了催化劑活性。最后,采用同樣的方法制備了CdV2O6/g-C3N4復(fù)合型光催化劑,考察了該催化劑對(duì)羅丹明B在可見光照射下降解性能。通過(guò)X射線粉末衍射(XRD),N2物理吸附(BET),傅里葉變換紅外光譜(FT-IR),紫外可見漫反射(UV-vis DRS),熱重(TG),掃描電子顯微鏡(SEM),透射電子顯微鏡(TEM),化學(xué)需氧量(COD)測(cè)定等技術(shù)對(duì)催化劑進(jìn)行了表征,對(duì)該催化劑的性質(zhì)、結(jié)構(gòu)、形貌和光催化活性的進(jìn)行研究。結(jié)果表明,該催化劑催化活性高和穩(wěn)定性好,具有較廣闊的前景。
[Abstract]:Since the 1970s, semiconductor photocatalysis technology has been favored by scientific researchers. In order to make full use of solar energy, scientists regard the research and development of visible light responsive photocatalyst materials as the most important problem in the development of photocatalytic materials. G-C3N4 is a new type of organic polymer semiconductor reported in recent years. It has the advantages of visible light, good chemical and thermal stability, nontoxic and simple preparation, and has attracted the attention of researchers all over the world, and has a broad application prospect. In this paper, based on g-C3N4, three kinds of high efficient visible light responsive photocatalysts were obtained by modifying g-C _ 3N _ 4 with the modification of ferrovanadate, ferromolybdate and cadmium vanadate. Firstly, a simple hydrothermal and grinding roasting method was used to prepare FeVO4/g-C3N4 composite photocatalyst which can respond to visible light. The mechanism of photocatalytic reaction was obtained by a series of characterization of the composite catalyst. From the results of many characterizations we can draw a conclusion that the fundamental reason for the increase of catalyst activity is the formation of heterojunctions between FeVO4/g-C3N4 and the inhibition of photogenerated electron-hole pairs. Moreover, the doping content of FeVO4/g-C3N4 is an important factor affecting the activity of the catalyst. When the actual content of FeVO4 is 5.0 wt%, the catalytic activity of the composite catalyst is the highest. Secondly, g-C3N4/Fe2 (MoO4) 3 composite phase catalyst was prepared by grinding and calcination method. The catalyst has a good response to visible light and can absorb visible light with a wavelength less than 560nm. 10.6wt%g-C3N4/Fe2 (MoO4) 3 has the best catalytic effect under visible light. The fundamental reason is that g-C3N4 and Fe2 (MoO4) 3 have matched band structure. The structure of heterojunction improves the efficiency of electron and hole separation, prolongs the lifetime of carriers, and improves the activity of catalyst. Finally, the CdV2O6/g-C3N4 composite photocatalyst was prepared by the same method, and the degradation performance of Rhodamine B under visible light irradiation was investigated. (BET), Fourier transform infrared spectroscopy (FT-IR), UV-vis DRS), thermogravimetric (TG), scanning electron microscope (SEM),) and X-ray powder diffraction (XRD), N2) physical adsorption on (BET), The catalytic properties, structure, morphology and photocatalytic activity of the catalyst were investigated by transmission electron microscopy (TEM), (TEM), chemical oxygen demand (COD) and other techniques. The results show that the catalyst has high catalytic activity and good stability and has a broad prospect.
【學(xué)位授予單位】:浙江師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:O643.36;O644.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 朱振峰;張煉;;釩酸鉍摻雜體系的研究進(jìn)展[J];中國(guó)陶瓷;2012年02期

2 成勇;;電感耦合等離子體原子發(fā)射光譜法測(cè)定偏釩酸鉀中微量鈉[J];理化檢驗(yàn)(化學(xué)分冊(cè));2014年01期

3 宋虎躍;吳勇民;郝佳瑞;;釩酸銨滴定鈾的原理及實(shí)驗(yàn)條件討論[J];化工之友;2007年13期

4 袁章福;錢家澍;石玉洪;;釩酸鈣的還原及直接合金化[J];鋼鐵;1992年02期

5 李國(guó)良,李家莉,陳鑒;六聚釩酸銨熱分解過(guò)程研究[J];高等學(xué);瘜W(xué)學(xué)報(bào);1984年02期

6 徐濤;六聚釩酸銨的等溫絕熱過(guò)程[J];鋼鐵釩鈦;1995年01期

7 劉守清;;介觀粒子釩酸銦的溶膠-凝膠合成及其光譜和光電化學(xué)研究(英文)[J];蘇州科技學(xué)院學(xué)報(bào);2005年04期

8 劉晶冰;張慧明;汪浩;張文熊;;納米釩酸鉍的微波快速合成及光催化性能研究[J];無(wú)機(jī)化學(xué)學(xué)報(bào);2008年05期

9 李國(guó)良,李家莉,陳鑒;六聚釩酸銨的熱力學(xué)過(guò)程和熱分解動(dòng)力學(xué)[J];鋼鐵釩鈦;1984年01期

10 成勇;彭慧仙;胡金榮;袁金紅;;電感耦合等離子體原子發(fā)射光譜法測(cè)定偏釩酸鉀中13種微量雜質(zhì)元素[J];理化檢驗(yàn)(化學(xué)分冊(cè));2013年07期

相關(guān)會(huì)議論文 前3條

1 劉超;李偉斌;康泰;;優(yōu)質(zhì)釩酸銨制取研究[A];第二屆釩產(chǎn)業(yè)先進(jìn)技術(shù)交流會(huì)論文集[C];2013年

2 柏曉松;金立鋼;;釩酸氧化法測(cè)定血清膽紅素的實(shí)驗(yàn)評(píng)價(jià)[A];中華醫(yī)學(xué)會(huì)第七次全國(guó)檢驗(yàn)醫(yī)學(xué)學(xué)術(shù)會(huì)議資料匯編[C];2008年

3 孫永福;高山;謝毅;;釩酸鉍量子管的合成及其可見光光催化性能的研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場(chǎng)摘要集[C];2012年

相關(guān)碩士學(xué)位論文 前10條

1 繆立軒;釩酸鉍材料的制備與光催化性能研究[D];大連海事大學(xué);2016年

2 王博;釩酸秘基光催化材料的制備及其光催化性能研究[D];吉林大學(xué);2016年

3 鄭通;釩酸銀微米片的制備及其光催化性質(zhì)的研究[D];吉林大學(xué);2016年

4 楊雪;新型釩酸鉍光催化劑的制備、改性及其光催化性能研究[D];福州大學(xué);2014年

5 農(nóng)慶燕;釩酸鐵、鉬酸鐵和釩酸鎘摻雜石墨相氮化碳材料的光催化性能研究[D];浙江師范大學(xué);2016年

6 徐玉鵬;釩酸鉍制備及光催化性能的研究[D];黑龍江大學(xué);2014年

7 朱麗偉;納米釩酸鉍的制備及其性能研究[D];牡丹江師范學(xué)院;2015年

8 李偉;釩酸鉍摻雜改性及光催化性能研究[D];哈爾濱理工大學(xué);2014年

9 王萌;焦釩酸鋅的制備及其光催化性能的研究[D];大連海事大學(xué);2015年

10 馮德圣;釩酸鉍基半導(dǎo)體功能材料的制備與性能研究[D];安徽理工大學(xué);2015年



本文編號(hào):2419612

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/huaxue/2419612.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6b3a8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com