岸式振蕩水柱波能轉(zhuǎn)換裝置的時(shí)域模擬
發(fā)布時(shí)間:2018-01-11 11:17
本文關(guān)鍵詞:岸式振蕩水柱波能轉(zhuǎn)換裝置的時(shí)域模擬 出處:《大連理工大學(xué)》2014年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 振蕩水柱 高階邊界元 源造波 時(shí)域模擬
【摘要】:隨著經(jīng)濟(jì)的增長(zhǎng)、環(huán)境的惡化,世界各國(guó)對(duì)清潔、可再生能源的需求越來(lái)越迫切。波浪能是一種發(fā)展前景廣闊的可再生能源,而振蕩水柱波能轉(zhuǎn)換裝置(OWC)是目前應(yīng)用最成功最廣泛的波浪能轉(zhuǎn)換裝置之一,它具有結(jié)構(gòu)簡(jiǎn)單、可靠性好,易于安裝和維護(hù)等優(yōu)點(diǎn)。 本文應(yīng)用高階邊界元方法(HOBEM)建立了岸式OWC的二維完全非線性時(shí)域數(shù)值模型。模型中采用源造波方法產(chǎn)生波浪,在氣室內(nèi)引入壓強(qiáng)模型模擬氣液耦合作用,引入粘性模型模擬粘性耗散。求解中采用混合歐拉-拉格朗日方法追蹤瞬時(shí)水面,運(yùn)用四階龍格庫(kù)塔方法更新自由水面上水質(zhì)點(diǎn)的位置和速度勢(shì)并在每一個(gè)時(shí)間步上重新劃分網(wǎng)格。 文中通過(guò)與已發(fā)表的關(guān)于平底岸式OWC與有底坡的岸式OWC的解析解、實(shí)驗(yàn)值和數(shù)值結(jié)果的對(duì)比,驗(yàn)證了模型的準(zhǔn)確性,并通過(guò)數(shù)值計(jì)算研究了岸式OWC在規(guī)則波和不規(guī)則波作用下的水動(dòng)力性能。 計(jì)算結(jié)果表明:在規(guī)則波作用下,不同周期入射波對(duì)應(yīng)不同的透平最佳阻尼系數(shù),長(zhǎng)周期波浪作用下能量轉(zhuǎn)換效率對(duì)透平阻尼系數(shù)不敏感。結(jié)構(gòu)尺寸的變化會(huì)影響OWC的共振頻率與能量轉(zhuǎn)換效率,前墻尺寸的變化對(duì)低頻區(qū)的能量轉(zhuǎn)換效率的影響很小,而氣室寬度的改變會(huì)影響OWC在整個(gè)工作頻率區(qū)間的能量轉(zhuǎn)換效率。在低頻區(qū),底坡角度的增加會(huì)導(dǎo)致能量轉(zhuǎn)換效率的減小,而高頻區(qū)剛好相反。前墻水平波浪力形態(tài)取決于入射波周期,在共振頻率附近一階分量占絕對(duì)主導(dǎo)地位,在高頻區(qū)和低頻區(qū)前墻水平力的高階分量變得比較明顯。不規(guī)則波作用下,氣室中點(diǎn)波面與氣室內(nèi)壓強(qiáng)譜的譜峰頻率都高于入射波譜的譜峰頻率,輸出功率曲線十分不穩(wěn)定。
[Abstract]:With the growth of economy and the deterioration of environment, the demand for clean and renewable energy is more and more urgent. Wave energy is a kind of renewable energy with broad development prospects. The oscillating water column wave energy converter (OWC) is one of the most successful and widely used wave energy conversion devices. It has the advantages of simple structure, good reliability, easy installation and maintenance. In this paper, a two-dimensional completely nonlinear time-domain numerical model of shore OWC is established by using the high-order boundary element method (HSE). The wave generation method is used to generate waves in the model. The pressure model is introduced to simulate the gas-liquid coupling and the viscous model is introduced to simulate the viscous dissipation. The hybrid Euler-Lagrangian method is used to track the instantaneous water surface. The fourth order Runge-Kutta method is used to update the position and velocity potential of water quality points on free water surface and to remesh each time step. The accuracy of the model is verified by comparing the analytical solutions, experimental values and numerical results with the published analytical solutions of flat-bottom OWC and shore-type OWC with bottom slopes. The hydrodynamic performance of shore OWC under the action of regular and irregular waves is studied numerically. The calculated results show that under the action of regular waves, different periodic incident waves correspond to different optimal damping coefficients of turbines. The energy conversion efficiency is not sensitive to the damping coefficient of the turbine under the action of long-period wave. The change of the structure size will affect the resonance frequency and energy conversion efficiency of OWC. The change of the front wall size has little effect on the energy conversion efficiency in the low frequency region, while the change of the air chamber width will affect the energy conversion efficiency of the OWC in the whole operating frequency range. The increase of bottom slope angle leads to the decrease of energy conversion efficiency, while the high frequency region is just the opposite. The horizontal wave force shape of the front wall depends on the incident wave period, and the first order component dominates the resonance frequency. The higher order components of the horizontal force of the front wall in the high frequency region and the low frequency region become obvious. Under the action of the irregular wave, the peak frequency of the point wave surface and the pressure spectrum in the chamber are higher than the peak frequency of the incident wave spectrum. The output power curve is very unstable.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2014
【分類(lèi)號(hào)】:P743.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 紀(jì)君娜;劉臻;紀(jì)立強(qiáng);;振蕩水柱波能發(fā)電裝置氣室的三維數(shù)值模擬研究[J];海岸工程;2011年02期
2 劉月琴,武強(qiáng);岸式波力發(fā)電裝置水動(dòng)力性能試驗(yàn)研究[J];海洋工程;2002年04期
3 梁賢光,孫培亞,游亞戈;汕尾100kW波力電站氣室模型性能試驗(yàn)[J];海洋工程;2003年01期
4 游亞戈;;復(fù)雜地形下岸式波能裝置的水動(dòng)力學(xué)計(jì)算[J];海洋技術(shù);1993年01期
5 史宏達(dá);李海鋒;劉臻;;基于VOF模型的OWC氣室波浪場(chǎng)數(shù)值分析[J];中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年03期
相關(guān)博士學(xué)位論文 前1條
1 劉臻;岸式振蕩水柱波能發(fā)電裝置的試驗(yàn)及數(shù)值模擬研究[D];中國(guó)海洋大學(xué);2008年
,本文編號(hào):1409313
本文鏈接:http://www.lk138.cn/kejilunwen/haiyang/1409313.html
最近更新
教材專(zhuān)著