成像目標(biāo)虛擬圓特征及其應(yīng)用
[Abstract]:The extraction of affine invariant features is a key step in imaging based target recognition and localization applications, which directly affects the final effect of related applications. Supported by the National Natural Science Foundation of China "Research on ranging system and key Technologies based on Monocular Image and Direction" (608712136) and the Research on Virtual Circle Features of Imaging Target and its Application (2011JM8002) of Shaanxi Provincial Natural Science basic Research Project. In this paper, the target rotation invariant feature and its application are studied in depth, and the rotation invariant circle feature of the target is extended to virtual circle feature. Based on the summarization of the current techniques for extracting rotating invariant features and the characteristics of the invariants of various types of features, the concept of virtual circle based on multi-point features is proposed according to the inherent rotation invariance of circular objects. Five different types of virtual circles are constructed by using 3 pairs of matching points in adjacent images in image sequences and their performance is compared. Compared with the existing methods, this kind of feature is easy to extract and there is no need to attach complex constraints to the image matching points. The simulation results show that the diameter of the virtual circle based on the expansion of the equilateral triangle is the best feature of the line segment of the range correlation property. In the estimation of the target distance, when the inclination angle of the target relative to the camera is in the range of [-10 擄, 10 擄] at the adjacent sampling time, The range error of the above line segment is about 鹵3%. In addition, the relative attitude change of the target between adjacent images is measured by using four matching point pairs. The measurement error is not more than 2.5 under one pixel noise, so it has good robustness and robustness.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP391.41;P23
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 付小寧;劉上乾;申建華;;借助特征線度的飛機(jī)被動(dòng)定位研究[J];電子測(cè)量與儀器學(xué)報(bào);2005年04期
2 喬宇,黃席樾,柴毅,周欣;基于自適應(yīng)直線擬合的角點(diǎn)檢測(cè)[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年02期
3 于勇;郭雷;;基于特征直線的目標(biāo)被動(dòng)定位方法[J];光電工程;2009年01期
4 于起峰,孫祥一,邱志強(qiáng);從單站光測(cè)圖像確定空間目標(biāo)三維姿態(tài)[J];光學(xué)技術(shù);2002年01期
5 邱志強(qiáng),陸宏偉,于起峰;基于圖像的三維剛體運(yùn)動(dòng)估計(jì)算法比較[J];光學(xué)技術(shù);2004年01期
6 王荻;王潔;付小寧;;基于單目圖像和方向的測(cè)距系統(tǒng)及性能分析[J];光子學(xué)報(bào);2011年07期
7 張廣軍,周富強(qiáng);基于雙圓特征的無(wú)人機(jī)著陸位置姿態(tài)視覺(jué)測(cè)量方法[J];航空學(xué)報(bào);2005年03期
8 于起峰;李強(qiáng);雷志輝;尚洋;朱憲偉;劉曉春;;基于序列圖像的無(wú)人機(jī)自測(cè)速方法與試驗(yàn)[J];航空學(xué)報(bào);2009年08期
9 黃士科;夏濤;張?zhí)煨?;基于紅外圖像的被動(dòng)測(cè)距方法[J];紅外與激光工程;2007年01期
10 朱憲偉;于起峰;;基于生物視覺(jué)的地面目標(biāo)識(shí)別與跟蹤鎖定[J];紅外與激光工程;2007年06期
相關(guān)博士學(xué)位論文 前3條
1 陳瀟;圖像目標(biāo)三維幾何不變量特征構(gòu)造與應(yīng)用[D];上海交通大學(xué);2011年
2 陳濤;圖像仿射不變特征提取方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2006年
3 曹健;基于局部特征的圖像目標(biāo)識(shí)別技術(shù)研究[D];北京理工大學(xué);2010年
相關(guān)碩士學(xué)位論文 前4條
1 高文井;序列成像目標(biāo)定位的DSP實(shí)現(xiàn)[D];西安電子科技大學(xué);2011年
2 胡智勇;月球車導(dǎo)航中計(jì)算機(jī)視覺(jué)的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2006年
3 郭煜;基于單目視覺(jué)的飛行器姿態(tài)角測(cè)量技術(shù)[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
4 侯國(guó)強(qiáng);基于配準(zhǔn)算法的單目被動(dòng)測(cè)距研究[D];西安電子科技大學(xué);2012年
本文編號(hào):2284322
本文鏈接:http://www.lk138.cn/kejilunwen/dizhicehuilunwen/2284322.html