面向?qū)ο蠓诸惙椒ㄔ谕恋乩谜{(diào)查中的應(yīng)用研究
[Abstract]:Traditional land use survey methods have long updating period, large workload, low efficiency and high cost. Remote sensing image classification technology can analyze the land use situation quickly and accurately, and master the real land basic data. It has wide application prospect and great application value in land use survey. However, the traditional pixel based classification method completely depends on the spectral information of the ground object, and neglects the abundant spatial information in the high-resolution image, which results in the interference of the classification results from the phenomenon of foreign body isospectrum and the salt and pepper noise. In order to solve this problem, this paper introduces the object-oriented classification method into the land survey. This method overcomes the disadvantages of the traditional classification method, and the classification results can be directly output in the form of vector polygons. Can be directly imported into the GIS environment for editing processing and application analysis. In this paper, the IKONOS high-resolution remote sensing image in 2010 is used as the data source, and the Northeast University and its adjacent areas are used as the experimental areas. A large number of experiments have been carried out on the object-oriented classification method. The following aspects are analyzed and studied: 1) texture filtering and edge detection layer are added in the segmentation process and the optimal segmentation parameters are obtained through several experiments. By comparing the RMAS values of all kinds of ground objects at different scales, the optimal scale of each kind of ground objects is determined, and the topological relationship between layers is combined. Finally, a network structure consisting of three scales of 50, 70 and 90 is established. 2) according to the current national land classification standards, combined with image visual interpretation and field investigation, the types of the study area are determined. In this paper, the best feature or combination of features to describe ground objects is analyzed, and the classification rule tree is established, and the results of object-oriented classification are compared with the traditional classification results based on pixel method. In the vector result map of object oriented classification, the object samples are selected in the field, and the length, width and area of the object samples are measured and calculated respectively. 3) the object oriented technology is used to classify the two Landsat-7 images. Based on the classification results, the change detection rules are constructed, and the change patterns of the ground objects are extracted, and the area of the change patterns is analyzed statistically. The experimental results show that the overall classification accuracy of the object-oriented classification method is 90.68, which is 18.98 higher than that of the traditional maximum likelihood method based on pixel. It is applied to the land use survey to realize the automation of the land use classification process. However, the boundary of vector objects obtained by object-oriented classification is serrated, and some of the measured results on the map are not linear distance, which leads to some errors between the vector objects and the objects of the same name in the field. Therefore, it is necessary to smooth the boundary before it can be stored. In addition, the combination of object-oriented classification technology and change detection can quickly and accurately detect the land change information, and provide an advanced technical means for the timely improvement and updating of land use database.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:P237
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李偉;;面向?qū)ο蟮倪b感變化檢測研究[J];北京測繪;2013年01期
2 徐登云;李志娟;;面向?qū)ο蟮倪b感影像分類方法在土地覆蓋中的應(yīng)用[J];西部資源;2012年02期
3 曹雨田;閆冬梅;張麗;何挺;;基于QuickBird衛(wèi)星數(shù)據(jù)的土地利用分類規(guī)則集研究[J];地理與地理信息科學(xué);2011年06期
4 初禹;單久庫;侯建國;;GeoEye-1遙感影像融合效果的比較分析[J];測繪與空間地理信息;2011年03期
5 陳杰;鄧敏;肖鵬峰;楊敏華;梅小明;劉慧敏;;結(jié)合支持向量機與粒度計算的高分辨率遙感影像面向?qū)ο蠓诸怺J];測繪學(xué)報;2011年02期
6 張俊;朱國龍;李妍;;面向?qū)ο蟾叻直媛视跋裥畔⑻崛≈械某叨刃?yīng)及最優(yōu)尺度研究[J];測繪科學(xué);2011年02期
7 侯偉;魯學(xué)軍;張春曉;王靜;;面向?qū)ο蟮母叻直媛视跋裥畔⑻崛》椒ㄑ芯俊运拇ɡ砜h居民地提取為例[J];地球信息科學(xué)學(xué)報;2010年01期
8 徐健;陳向陽;張海霞;劉偉東;;面向?qū)ο蠓诸惙椒ㄔ谌珖诙瓮恋卣{(diào)查中的應(yīng)用[J];測繪技術(shù)裝備;2009年02期
9 萬雪;;基于RBF神經(jīng)網(wǎng)絡(luò)的高分辨率遙感影像分類的研究[J];測繪通報;2009年02期
10 杜施;;遙感技術(shù)在第二次土地調(diào)查中的應(yīng)用[J];國土資源導(dǎo)刊;2007年05期
相關(guān)博士學(xué)位論文 前5條
1 劉煒;土地利用/覆被變化信息遙感圖像自動分類識別與提取方法研究[D];西北農(nóng)林科技大學(xué);2012年
2 高偉;基于特征知識庫的遙感信息提取技術(shù)研究[D];中國地質(zhì)大學(xué);2010年
3 陳忠;高分辨率遙感圖像分類技術(shù)研究[D];中國科學(xué)院研究生院(遙感應(yīng)用研究所);2006年
4 陽愛民;模糊分類模型的研究[D];復(fù)旦大學(xué);2005年
5 黃慧萍;面向?qū)ο笥跋穹治鲋械某叨葐栴}研究[D];中國科學(xué)院研究生院(遙感應(yīng)用研究所);2003年
相關(guān)碩士學(xué)位論文 前8條
1 陸超;基于WorldView-2影像的面向?qū)ο笮畔⑻崛〖夹g(shù)研究[D];浙江大學(xué);2012年
2 魏宇峰;高分辨率遙感影像道路信息提取關(guān)鍵技術(shù)研究與實現(xiàn)[D];北京理工大學(xué);2010年
3 汪求來;面向?qū)ο筮b感影像分類方法及其應(yīng)用研究[D];南京林業(yè)大學(xué);2008年
4 劉常娟;面向?qū)ο蠓诸惙椒ㄔ谕恋卣{(diào)查中的可行性研究[D];中南大學(xué);2008年
5 田新光;面向?qū)ο蟾叻直媛蔬b感影像信息提取[D];中國測繪科學(xué)研究院;2007年
6 馬文;高分辨率遙感影像道路分割算法研究[D];河海大學(xué);2006年
7 周春艷;面向?qū)ο蟮母叻直媛蔬b感影像信息提取技術(shù)[D];山東科技大學(xué);2006年
8 孫華;SPOT5在森林資源調(diào)查中的應(yīng)用研究[D];中南林業(yè)科技大學(xué);2006年
,本文編號:2280797
本文鏈接:http://www.lk138.cn/kejilunwen/dizhicehuilunwen/2280797.html