計(jì)及疲勞累積效應(yīng)的IGBT模塊焊料層失效機(jī)理及疲勞損傷研究
[Abstract]:As the key unit of electric energy conversion in the fields of electric vehicle driving, new energy power generation, intelligent power grid, rail transit and the like, the IGBT power module is gradually becoming an important fulcrum of the global development "green economy", and the safety and reliability of the IGBT power module are an important guarantee for solving the energy shortage and reducing the carbon emission amount. The solder layer is an important part of the internal electrical connection, mechanical support and heat dissipation channel of the IGBT module, and the reliable connection of the solder layer ensures the normal realization of the function of the power module. In the face of complex and demanding working environment, the thermal fatigue damage of the solder layer is one of the main modes of the module failure. Therefore, the mechanism of the fatigue failure of the solder layer is fully understood, the influence of the damage of the solder layer on the IGBT module is investigated, and the reliability of the IGBT module is of great significance. Although many scholars have studied the mechanism of the fatigue failure of the solder layer of the package module, the failure state of the solder layer is analyzed mainly from the surface detection or the external electric parameters, and the failure mechanism of the solder layer is deeply explored from the physical mechanism. In addition, most of the studies have neglected the effect of the accumulated damage of the solder layer on the fatigue failure of the IGBT module, resulting in an on-line monitoring of the IGBT module and a certain error in the service life evaluation method. Based on this, the study of the failure mechanism and fatigue damage of the solder layer of the IGBT module is carried out by using the IGBT module of the SKM50GB12T4 model as the research object. The failure mechanism of the solder layer of the IGBT module and the fatigue damage study are carried out by the finite element simulation technology, the combination of the theoretical analysis and the aging experiment. In this paper, the damage accumulation effect of the solder layer is considered, and the research results provide the theoretical basis and technical support for the reliability evaluation and state monitoring of the IGBT module more accurately. The main contents of this paper are as follows: (1) For the current single electric-thermal or thermal-force simulation model, the effect of electric, thermal and mechanical properties on the fatigue failure of the IGBT module can not be considered at the same time, and the electric-thermal-force multi-physical field coupling model considering the viscoplastic effect of the solder layer is established. The failure mechanism of IGBT module is analyzed. First, using the MATLAB/ Simulink simulation platform, the equivalent Foster thermal network model of the IGBT module is established, and the power loss generated by the chip at the rated current is calculated. Secondly, based on the finite element simulation software ANSYS, the equal-scale finite element model of the IGBT module is established, and the electric-thermal-stress coupling analysis of the IGBT module is carried out by the comprehensive Foster thermal network model. Finally, a detailed study of the fatigue failure mechanism of the solder layer over time is carried out for the viscoplastic mechanical behavior of the solder layer. (2) The fatigue life model of the solder layer takes the stress-strain-related parameter as the input value, and the time-consuming finite element analysis is required before each life evaluation. In view of this problem, the fatigue failure evaluation model of the solder layer is put forward by using the temperature parameter instead of the stress-strain parameter. First, based on the existing fatigue life model, a mechanical indication parameter which can be used to characterize the fatigue failure of the solder layer is selected, and the influence degree and the influence rule of the junction temperature fluctuation, the minimum junction temperature and the power cycle period of the power cycle on the fatigue indication parameters of the solder layer are analyzed. Then, based on the obtained influence law and the simulation data, the surface function between the temperature variable and the fatigue indication parameter of the solder layer is established by the least square method. (3) The initiation and expansion of the crack is one of the most important failure modes of the solder layer, but the current prediction and failure evaluation of the IGBT module and the solder layer often ignore the effect of the crack damage. In the light of this problem, the failure mechanism of the crack damage module is analyzed. And a solder layer failure evaluation model taking into account the fatigue accumulation effect is provided. First, based on the physical mechanism of crack propagation, the finite element model of the crack damage of the IGBT module is established in the ANSYS, the thermal-stress field in the damage model under the power cycle is analyzed, and the influence of the crack length on the thermal resistance of the IGBT module is discussed in detail. Secondly, by comparing the aging effect of the same junction temperature fluctuation load in the damage model and the complete model, the fatigue failure evaluation model of the solder layer containing the damage factor is put forward. Finally, the simulation results are verified by the accelerated aging experiment.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TN322.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 張小玲;張健;謝雪松;呂長(zhǎng)志;;IGBT熱特性的仿真及焊料層分析[J];功能材料與器件學(xué)報(bào);2011年06期
2 徐玲;周洋;張澤峰;陳明祥;劉勝;;IGBT模塊焊料層空洞對(duì)模塊溫度影響的研究[J];中國(guó)電子科學(xué)研究院學(xué)報(bào);2014年02期
3 田蘊(yùn)杰;張小玲;謝雪松;佘爍杰;呂長(zhǎng)志;王任卿;;IGBT熱疲勞工作對(duì)焊料層可靠性的影響[J];固體電子學(xué)研究與進(jìn)展;2014年03期
4 胡吉山;HDI板RCC料層孔壁爆裂原因分析和改善[J];印制電路信息;2005年05期
5 慧文;;光盤(pán)為什么按顏色來(lái)區(qū)分[J];青年科學(xué);2007年10期
6 鄭鋼濤;陳素鵬;胡俊;李國(guó)元;;焊料層空洞面積對(duì)功率器件電阻和熱阻的影響[J];半導(dǎo)體技術(shù);2010年11期
7 孫皆宜;趙鴻雁;;自適應(yīng)PID控制器實(shí)現(xiàn)熟料料層自動(dòng)控制[J];微計(jì)算機(jī)信息;2006年13期
8 ;[J];;年期
相關(guān)會(huì)議論文 前10條
1 Choi Eungsoo;周取定;;高料層燒結(jié)節(jié)能的研究[A];2001中國(guó)鋼鐵年會(huì)論文集(上卷)[C];2001年
2 張瑞堂;代汝昌;孟海翔;謝超雄;李真明;李振波;任志國(guó);;高氧位厚料層燒結(jié)新技術(shù)[A];1999中國(guó)鋼鐵年會(huì)論文集(上)[C];1999年
3 陳長(zhǎng)虹;;本鋼北營(yíng)煉鐵廠300m~2燒結(jié)機(jī)厚料層生產(chǎn)實(shí)踐[A];2012年全國(guó)煉鐵生產(chǎn)技術(shù)會(huì)議暨煉鐵學(xué)術(shù)年會(huì)文集(上)[C];2012年
4 李敬如;王岳飛;王懷彬;馬靜波;;邯鋼360m~2燒結(jié)機(jī)厚料層燒結(jié)實(shí)踐[A];2011年河北省煉鐵技術(shù)暨學(xué)術(shù)年會(huì)論文集[C];2011年
5 趙志星;安鋼;裴元東;程崢明;王全樂(lè);石江山;趙勇;王洪江;;京唐大型燒結(jié)機(jī)料層結(jié)構(gòu)物性參數(shù)和混合料性能測(cè)定[A];2012年全國(guó)煉鐵生產(chǎn)技術(shù)會(huì)議暨煉鐵學(xué)術(shù)年會(huì)文集(下)[C];2012年
6 楊超;;厚料層增產(chǎn)實(shí)踐[A];2013年河北省煉鐵技術(shù)暨學(xué)術(shù)年會(huì)論文集[C];2013年
7 萬(wàn)義東;馬靜波;;邯鋼西區(qū)燒結(jié)機(jī)厚料層燒結(jié)點(diǎn)火技術(shù)的優(yōu)化[A];2011年全國(guó)冶金節(jié)能減排與低碳技術(shù)發(fā)展研討會(huì)文集[C];2011年
8 宮建海;楊霞;邊秀生;何軍;;180m~2燒結(jié)機(jī)厚料層燒結(jié)的應(yīng)用[A];2013年煉鐵及原料降本增效實(shí)用新技術(shù)新設(shè)備研討會(huì)論文集[C];2013年
9 洪永年;;馬鋼三鐵總廠厚料層燒結(jié)生產(chǎn)實(shí)踐[A];2008年全國(guó)煉鐵生產(chǎn)技術(shù)會(huì)議暨煉鐵年會(huì)文集(上冊(cè))[C];2008年
10 黃士芳;董平川;;礦巖料層輥壓粉碎的試驗(yàn)研究[A];第四屆全國(guó)巖石破碎學(xué)術(shù)討論會(huì)論文集[C];1989年
相關(guān)重要報(bào)紙文章 前10條
1 陳娟邋玉月;永榮發(fā)電廠發(fā)明“鍋爐恒料層運(yùn)行”新技術(shù)[N];經(jīng)理日?qǐng)?bào);2007年
2 周益民;增料層 穩(wěn)質(zhì)量 降消耗[N];中國(guó)冶金報(bào);2012年
3 記者 蔡立軍 通訊員 江志強(qiáng);天鐵厚料層燒結(jié)降低固體燃耗[N];中國(guó)冶金報(bào);2008年
4 徐海軍;酒鋼厚料層均質(zhì)燒結(jié)取得新突破[N];中國(guó)冶金報(bào);2005年
5 石剛;在厚料層低溫?zé)Y(jié)實(shí)踐中共贏[N];中國(guó)冶金報(bào);2004年
6 蔣鵬程;攀鋼厚料層高氧位燒結(jié)技術(shù)攻關(guān)效果佳[N];中國(guó)冶金報(bào);2004年
7 李云;走出靜態(tài)低谷 把握動(dòng)態(tài)脈搏[N];中國(guó)電力報(bào);2004年
8 張雪根 林輝妙 羅文;“模擬法人”降成本[N];中國(guó)冶金報(bào);2011年
9 張立新;唐鋼股份煉鐵廠燒結(jié)產(chǎn)量、質(zhì)量均提升[N];中國(guó)冶金報(bào);2008年
10 楊四榮 韓士成 劉仲?gòu)?qiáng);燒結(jié)帶冷機(jī)技術(shù)改造 實(shí)現(xiàn)節(jié)能降耗 提高冷卻能力[N];世界金屬導(dǎo)報(bào);2007年
相關(guān)博士學(xué)位論文 前1條
1 張小輝;基于燃料分層分布的煙氣循環(huán)燒結(jié)工藝仿真與優(yōu)化[D];中南大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 康芷源;處理含鋅粉塵的轉(zhuǎn)底爐料層溫度分布特性研究[D];重慶大學(xué);2015年
2 池昌江;準(zhǔn)脆性顆粒材料的受壓漸進(jìn)破碎機(jī)制研究[D];清華大學(xué);2015年
3 江南;計(jì)及疲勞累積效應(yīng)的IGBT模塊焊料層失效機(jī)理及疲勞損傷研究[D];重慶大學(xué);2016年
4 李萬(wàn)宏;燒結(jié)點(diǎn)火溫度控制及料層溫度分布規(guī)律研究[D];重慶大學(xué);2013年
5 翟江南;寶鋼厚料層燒結(jié)技術(shù)創(chuàng)新的經(jīng)濟(jì)學(xué)分析[D];中南大學(xué);2005年
6 李永強(qiáng);高料層碳熱還原的基礎(chǔ)試驗(yàn)研究[D];東北大學(xué);2014年
7 王萌;燒結(jié)余熱豎罐式回收料層換熱系數(shù)的實(shí)驗(yàn)研究[D];東北大學(xué);2012年
8 封溢;燒結(jié)機(jī)料層溫度場(chǎng)數(shù)值模擬及燒結(jié)終點(diǎn)研究[D];中南大學(xué);2014年
9 陳軍營(yíng);燒結(jié)主抽風(fēng)系統(tǒng)穩(wěn)定性的控制方案研究[D];華中科技大學(xué);2007年
10 李磊;燒結(jié)余熱豎罐式回收料層火用傳遞系數(shù)實(shí)驗(yàn)研究[D];東北大學(xué);2013年
,本文編號(hào):2483981
本文鏈接:http://www.lk138.cn/kejilunwen/dianzigongchenglunwen/2483981.html