銦鎵鋅氧化物半導(dǎo)體材料的研究與仿真
[Abstract]:As an indium gallium zinc oxide semiconductor with a history of only more than ten years, the conductive mechanism of indium gallium zinc oxide semiconductor has not yet been determined. However, it is certain that the density of states of indium gallium zinc oxide is an important characterization of its electrical properties. In the existing literature, the research on the density of states model of indium gallium zinc oxide semiconductor is mainly focused on the extraction of some specific models or model parameters. In this paper, the main current state density model of indium gallium zinc oxide semiconductor is combined, and the related materials and devices are modeled and simulated by using computer simulation software. The influence of each model parameter on the device characteristics and the interaction between the model parameters are studied in detail. In this paper, the influence of state density model parameters on the characteristics of the device is also shown intuitively by extracting the charge distribution curve of trap capture in the band gap of the device. On this basis, the capture charge distribution curve is extracted by using different gate bias voltage, and the influence of state density model parameters on the device is amplified. After a series of simulation analysis, the influence of the parameters of each state density model on the device characteristics is qualitatively given, and the causes are analyzed in detail. The simulation results show that the drain current and threshold voltage of indium gallium zinc oxide semiconductor state density model mainly affect the drain current and threshold voltage of indium gallium zinc oxide semiconductor. when the density of host state increases, the drain current of indium gallium zinc oxide semiconductor decreases and the threshold voltage increases. The donor part mainly affects the subthreshold characteristics of the device, depending on its position in the band gap. When the donor state density near the Fermi energy level increases, the subthreshold swing of the device increases, and when the donor state density above the Fermi energy level increases, The threshold voltage of the device is reduced. In addition, when the donor density distribution center moves from the conduction band to the valence band, the drain current and threshold voltage of the device decrease. For different manufacturing processes, the properties of indium gallium zinc oxide semiconductors are different, so these results provide guidance for the future material definition in the simulation of indium gallium zinc oxide semiconductor devices with specific manufacturing processes. At the same time, the simulation of indium gallium zinc oxide semiconductor flexible device and its lighting characteristics are also discussed in this paper. The simulation results of the former show that there is no difference in device characteristics between planar devices and curved devices, but this result is obtained in the absence of stress model. It can not be used as a proof of the applicability of indium gallium zinc oxide semiconductors in flexible devices. In the latter simulation, we observe the effect of light on indium gallium zinc oxide semiconductor devices, but the effect is similar to that of hydrogenated amorphous silicon in the absence of relevant simulation models. That is, light only increases the turn-off current of the device, but lacks its unique effect on the threshold voltage of indium gallium zinc oxide semiconductor devices.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TN304.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姚建年;氧化物半導(dǎo)體薄膜的光電效應(yīng)及其應(yīng)用[J];感光科學(xué)與光化學(xué);1997年04期
2 丁海東;氧化物半導(dǎo)體甲烷敏感元件研究進(jìn)展[J];傳感器世界;2005年06期
3 姚建年;過渡會屬氧化物半導(dǎo)體薄膜的光電化學(xué)研究及其應(yīng)用[J];世界科技研究與發(fā)展;1998年06期
4 馬格林,曹全喜,黃云霞;紅外和雷達(dá)復(fù)合隱身材料——摻雜氧化物半導(dǎo)體[J];紅外技術(shù);2003年04期
5 李春鴻,姜克斌;真空熱處理對氧化物半導(dǎo)體薄膜電阻的影響[J];半導(dǎo)體技術(shù);1983年03期
6 蔣朝倫,陶明德;多晶氧化物半導(dǎo)體中晶界對電導(dǎo)的影響[J];電子元件與材料;2003年06期
7 古彥飛;季惠明;張穎;;氧化物半導(dǎo)體丙酮氣敏傳感器材料研究與應(yīng)用[J];材料導(dǎo)報;2004年08期
8 范志新,孫以材,陳玖琳;氧化物半導(dǎo)體透明導(dǎo)電薄膜的最佳摻雜含量理論計算[J];半導(dǎo)體學(xué)報;2001年11期
9 賀少敏;;淺析新型氧化物半導(dǎo)體光電極的合成[J];計算機光盤軟件與應(yīng)用;2013年15期
10 張新安;張景文;張偉風(fēng);侯洵;;氧化物半導(dǎo)體薄膜晶體管的研究進(jìn)展[J];現(xiàn)代顯示;2009年04期
相關(guān)會議論文 前5條
1 黃延偉;程寅;李桂峰;張群;;p型摻鋰氧化鎳透明氧化物半導(dǎo)體薄膜的制備及性能研究[A];TFC’09全國薄膜技術(shù)學(xué)術(shù)研討會論文摘要集[C];2009年
2 陳軍;鄧少芝;佘峻聰;許寧生;;若干種氧化物半導(dǎo)體納米線的制備及其應(yīng)用的研究[A];中國真空學(xué)會2008年學(xué)術(shù)年會論文摘要集[C];2008年
3 李喜峰;王穎華;李桂鋒;張群;黃麗;章壯健;;渠道火花燒蝕法制備p型透明氧化物半導(dǎo)體薄膜[A];中國真空學(xué)會2006年學(xué)術(shù)會議論文摘要集[C];2006年
4 杜祖亮;;基于1D氧化物半導(dǎo)體的光電納米器件[A];中國化學(xué)會第28屆學(xué)術(shù)年會第4分會場摘要集[C];2012年
5 楊銘;施展;張群;;P型導(dǎo)電Ni_(0.9)Cu_(0.1)O透明氧化物半導(dǎo)體薄膜的研究[A];TFC’09全國薄膜技術(shù)學(xué)術(shù)研討會論文摘要集[C];2009年
相關(guān)博士學(xué)位論文 前3條
1 趙靖;介孔氧化物半導(dǎo)體的制備及其化學(xué)傳感特性的研究[D];吉林大學(xué);2013年
2 趙倩;TiO_2基氧化物半導(dǎo)體磁性的實驗研究[D];天津大學(xué);2009年
3 王書杰;氧化物半導(dǎo)體納米結(jié)構(gòu)的制備及其光電性能研究[D];河南大學(xué);2009年
相關(guān)碩士學(xué)位論文 前9條
1 趙學(xué)平;p型銅鐵礦結(jié)構(gòu)透明氧化物半導(dǎo)體的制備與性能研究[D];北京工業(yè)大學(xué);2009年
2 鐘煥周;P型銅鐵礦結(jié)構(gòu)摻雜氧化物半導(dǎo)體CuAlO_2的制備及性能研究[D];廣東工業(yè)大學(xué);2012年
3 賈紅;氧化物半導(dǎo)體的濕化學(xué)法制備[D];浙江理工大學(xué);2010年
4 萬逸群;銦鎵鋅氧化物半導(dǎo)體材料的研究與仿真[D];電子科技大學(xué);2015年
5 張慶;氧化物半導(dǎo)體微結(jié)構(gòu)調(diào)控及性能研究[D];齊魯工業(yè)大學(xué);2015年
6 施展;p型Cu_(1-x)Ni_xO透明氧化物半導(dǎo)體薄膜的制備及性能分析[D];復(fù)旦大學(xué);2009年
7 麥海翔;稀土Eu、Nd、Y摻雜氧化物半導(dǎo)體CuAlO_2的制備及性能研究[D];廣東工業(yè)大學(xué);2015年
8 宋曉英;P型銅鐵礦結(jié)構(gòu)氧化物半導(dǎo)體CuCrO_2的摻雜效應(yīng)及性能研究[D];廣東工業(yè)大學(xué);2013年
9 王詩琪;In_2O_3稀磁氧化物半導(dǎo)體的局域結(jié)構(gòu)與磁、輸運性能[D];天津理工大學(xué);2014年
,本文編號:2483161
本文鏈接:http://www.lk138.cn/kejilunwen/dianzigongchenglunwen/2483161.html