單個(gè)半導(dǎo)體納米晶多激子相關(guān)性質(zhì)的研究
[Abstract]:Semiconductor nanocrystals are a class of nano-semiconductor materials consisting of ~100-10 000 atoms with a typical size of 1-10 nm. The size of nanocrystals is smaller than or similar to the exciton Bohr radius, so they belong to the quantum confined material system. Because of the positive correlation between the confinement degree of nanocrystals, we can adjust the band structure of nanocrystals by changing the size and shape of nanocrystals. The discrete energy levels make the intermittence Auger interaction of carriers no longer restricted by the momentum conservation condition, and the nanocrystalline size enlarges the wave function overlap and Coulomb interaction between carriers, which leads to this. Rapid Auger recombination inhibits the radiative recombination of multiple excitons, making semiconductor nanocrystals an ideal single photon source. At the same time, strong Auger recombination promotes the collision ionization process and enhances the carrier multiplication efficiency of nanocrystals. For example, in the field of LED, high quality white light source can be obtained by controlling the luminous color of nanocrystals through the limited effect of nanocrystals; in the field of quantum information, semiconductor nanocrystals are good single photon source at room temperature; in the field of solar cells and photodetectors, nanocrystals have high efficiency of carrier doubling efficiency. In this paper, we mainly study the properties of single semiconductor nanocrystalline polyexciton, including single photon emission, fluorescence scintillation, spectral drift, CdSe nanocrystalline polyexciton recombination, carrier multiplication process. In the second chapter, we mainly study single CsPbBr_3 nanocrystalline. Optical properties. Firstly, CsPbBr_3 nanocrystals with an average size of 9.4 nm were synthesized by chemical method. The size of CsPbBr_3 nanocrystals is close to the exciton Bohr radius. Therefore, CsPbBr_3 nanocrystals belong to a quantum confined system. At room temperature, CsPbBr_3 nanocrystals exhibit fluorescence scintillation phenomena. These random dark states originate from the non-radiation of charged excitons. Fluorescence quenching induced by Auger recombination. Auger effect also inhibits the radiative recombination of multiple excitons. The single photon emission properties of CsPbBr_3 nanocrystals are determined by measuring the second-order correlation function. The fluorescence wavelength of perovskite nanocrystals can be controlled artificially by quantum confinement effect and changing the composition of halogen elements (Cl, Br, I), which makes it possible to control the emission of CsPbBr_3 nanocrystals artificially. Perovskite nanocrystals are powerful competitors for single photon sources. At low temperatures, the fluorescence spectra of single CsPbBr_3 nanocrystals exhibit spectral drift, which results in a relatively wide spectral linewidth of 1meV. CsPbBr_3 nanocrystals exhibiting optical properties similar to those of traditional metal sulfide nanocrystals. Advantages: The absorption cross section of CsPbBr_3 nanocrystals is two orders of magnitude larger than that of conventional nanocrystals, and the fast radiation recombination of CsPbBr_3 nanocrystals also leads to higher single photon emission efficiency. In the charged state, if two photons are absorbed at the same time, the charged double exciton state is formed. The charged double exciton state is formed by Auger process, and the charged single exciton state is recombined by Auger process. We measure the fluorescence of a single elongated CdSe nanocrystal. In addition to the bright and dark states of the fluorescence scintillation, a gray state with fluorescence intensity between the two states appears in the fluorescence scintillation curve at high power. The gray state originates from the double exciton Auger interaction of the negatively charged nanocrystals which absorb two photons at the same time. The second-order correlation function confirms that it originates from the radiative recombination of the negatively charged double excitons, and the decay curve of the single-exponential fluorescence intensity of the gray state implies that the photons emitted by the nanocrystals have the same fluorescence lifetime. The carrier multiplication effect in a single CdSe nanocrystal is studied by means of single molecule spectroscopy. For ordinary semiconductor nanocrystals, the Auger recombination lifetime of charged and neutral excitons is generally in the order of sub-nanosecond, which is much shorter than the radiation recombination lifetime of tens of nanoseconds of neutral excitons. Ultra-fast spectroscopy is difficult to accurately distinguish the true carrier multiplication signal related to double-exciton Auger recombination and the false carrier multiplication signal related to charged exciton Auger recombination. The average carrier multiplication efficiency of CdSe nanocrystals is 20.2% at 266 nm (photon energy 2.46 times band gap energy) based on the measurement of carrier multiplication efficiency of a large number of single nanocrystals.
【學(xué)位授予單位】:南京大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TN304
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 侯博;劉擁軍;袁波;蔣峰芝;;半導(dǎo)體納米晶在生物標(biāo)記領(lǐng)域的應(yīng)用[J];化學(xué)通報(bào);2008年04期
2 沈熙磊;;稀土摻雜半導(dǎo)體納米發(fā)光材料研究取得新進(jìn)展[J];半導(dǎo)體信息;2011年05期
3 吳慶生,劉金庫(kù);銅族硫化物半導(dǎo)體納米晶的仿生合成及其光電性能[J];中國(guó)有色金屬學(xué)報(bào);2005年02期
4 郭影;李國(guó)棟;張赫;陳接勝;;以含鉻類水滑石型層狀化合物為模板制備硫化物半導(dǎo)體納米晶[J];高等學(xué)校化學(xué)學(xué)報(bào);2006年04期
5 ;[J];;年期
相關(guān)會(huì)議論文 前8條
1 彭卿;莊仲濱;魯曉棠;施建興;劉云新;;無(wú)機(jī)半導(dǎo)體納米晶的能隙調(diào)控合成與組裝[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第8分會(huì)場(chǎng)摘要集[C];2012年
2 鄒勃;王英楠;寧甲甲;戴全欽;肖寧如;肖冠軍;楊新一;;新型半導(dǎo)體納米晶制備,性質(zhì)及其應(yīng)用[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場(chǎng)摘要集[C];2012年
3 陳代雄;張億;崔俊艷;楊英威;;柱芳烴與半導(dǎo)體納米晶復(fù)合材料的制備與應(yīng)用[A];全國(guó)第十六屆大環(huán)化學(xué)暨第八屆超分子化學(xué)學(xué)術(shù)討論會(huì)論文摘要集[C];2012年
4 解仁國(guó);楊文勝;;熒光半導(dǎo)體納米晶制備及應(yīng)用研究[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第33分會(huì):納米材料合成與組裝[C];2014年
5 潘道成;聶偉;劉曉播;王強(qiáng);蔣世春;安立佳;姬相玲;姜炳政;;Ⅱ-Ⅵ族半導(dǎo)體納米晶制備及其發(fā)光性能[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(上冊(cè))[C];2006年
6 張洋;孫斌;沈群東;;基于靜電自組裝的共軛高分子/半導(dǎo)體納米晶雜化材料[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)納米化學(xué)分會(huì)場(chǎng)論文集[C];2008年
7 張加濤;紀(jì)穆為;劉健;朱鶴孫;;陽(yáng)離子交換反應(yīng)在半導(dǎo)體納米晶的摻雜、異質(zhì)結(jié)構(gòu)調(diào)控中的新應(yīng)用[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第05分會(huì):無(wú)機(jī)化學(xué)[C];2014年
8 陳美艷;陳慶川;;離子注入制備Ge半導(dǎo)體納米晶及其光學(xué)性能研究[A];2008年全國(guó)荷電粒子源、粒子束學(xué)術(shù)會(huì)議暨中國(guó)電工技術(shù)學(xué)會(huì)第十二屆電子束離子束學(xué)術(shù)年會(huì)、中國(guó)電子學(xué)會(huì)焊接專業(yè)委員會(huì)第九屆全國(guó)電子束焊接學(xué)術(shù)交流會(huì)、粒子加速器學(xué)會(huì)第十一屆全國(guó)離子源學(xué)術(shù)交流會(huì)、中國(guó)機(jī)械工程學(xué)會(huì)焊接分會(huì)2008年全國(guó)高能束加工技術(shù)研討會(huì)、北京電機(jī)工程學(xué)會(huì)第十屆粒子加速器學(xué)術(shù)交流會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前10條
1 劉軼;利用綠色化學(xué)法合成具有光伏性能的半導(dǎo)體納米晶[D];吉林大學(xué);2013年
2 秦磊;膠體半導(dǎo)體納米晶消光系數(shù)的研究[D];吉林大學(xué);2015年
3 劉澤柯;半導(dǎo)體納米晶材料的合成及其在光電器件中的應(yīng)用[D];蘇州大學(xué);2016年
4 牛金鐘;Ⅱ-Ⅵ族半導(dǎo)體納米晶的合成及性質(zhì)研究[D];河南大學(xué);2010年
5 方淳;無(wú)機(jī)半導(dǎo)體納米晶/共軛聚合物復(fù)合材料的制備、表征以及復(fù)合組分間的光電作用的研究[D];復(fù)旦大學(xué);2008年
6 鄒_g;硫族化合物半導(dǎo)體納米晶的制備及其光伏應(yīng)用[D];浙江大學(xué);2011年
7 唐愛(ài)偉;金屬硫族化合物半導(dǎo)體納米晶的合成及其性能的研究[D];北京交通大學(xué);2009年
8 劉紅梅;硫族半導(dǎo)體納米晶的可控合成及光電性能應(yīng)用[D];華南理工大學(xué);2012年
9 王洪哲;高溫溶劑法制備半導(dǎo)體納米晶及其發(fā)光調(diào)制和形貌控制研究[D];吉林大學(xué);2010年
10 呂曉丹;半導(dǎo)體納米晶的表面功能化及其與功能性聚合物的復(fù)合[D];東北師范大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 周遠(yuǎn)敏;碲化亞銅基半導(dǎo)體納米晶的調(diào)控合成及其性能研究[D];北京理工大學(xué);2015年
2 朱淑俊;負(fù)載于碳納米管的二氧化鈦光催化吡咯聚合及光電轉(zhuǎn)換薄膜的制備研究[D];復(fù)旦大學(xué);2011年
3 劉健;Ⅱ-Ⅵ族半導(dǎo)體納米晶的摻雜調(diào)控合成及光電性能研究[D];北京理工大學(xué);2016年
4 王照銳;硫?qū)佗?Ⅲ-Ⅵ_2族半導(dǎo)體納米晶的制備及其光學(xué)性質(zhì)的研究[D];吉林大學(xué);2016年
5 傅文平;多晶相半導(dǎo)體納米晶的控制合成及關(guān)鍵因素研究[D];北京理工大學(xué);2016年
6 王京紅;半導(dǎo)體納米晶的制備及其仿生組裝[D];同濟(jì)大學(xué);2007年
7 張林;半導(dǎo)體納米晶的制備及其光學(xué)性能研究[D];武漢理工大學(xué);2011年
8 姜灃芮;半導(dǎo)體納米晶的化學(xué)制備及其光學(xué)性能研究[D];武漢理工大學(xué);2012年
9 封振宇;MInS2半導(dǎo)體納米晶及其復(fù)合結(jié)構(gòu)的合成與光譜性能研究[D];山東大學(xué);2010年
10 陳健;硫族化合物半導(dǎo)體納米晶的合成及表征[D];南京理工大學(xué);2007年
,本文編號(hào):2240885
本文鏈接:http://www.lk138.cn/kejilunwen/dianzigongchenglunwen/2240885.html