基于耦合方環(huán)共振空腔的可控Fano共振研究
發(fā)布時間:2018-09-06 18:31
【摘要】:表面等離子激元學(xué)是一門基于表面等離子激元(Surface Plasmon Polaritons,SPPs)的新興科學(xué)。SPPs是一種由金屬表面的集群振蕩自由電子與外界光子相互耦合激發(fā),能夠強烈束縛在介質(zhì)-金屬表面?zhèn)鞑サ谋砻骐姶挪ɑ旌夏J。SPPs能夠克服衍射極限的限制從而使系統(tǒng)更易于集成,結(jié)合目前同樣發(fā)展迅速的納米技術(shù),基于SPPs設(shè)計的表面等離子激元波導(dǎo)特別適合應(yīng)用于集成光學(xué)回路中納米光子器件的設(shè)計與制備。基于MIM(Metal-Insulator-Metal,MIM)型表面等離子激元波導(dǎo),本文提出一種新型的耦合方環(huán)共振空腔波導(dǎo)結(jié)構(gòu),并針對該波導(dǎo)結(jié)構(gòu)進行部分改進,提出了耦合裂口方環(huán)共振空腔波導(dǎo)結(jié)構(gòu)和耦合方環(huán)共振空腔與耦合橫腔波導(dǎo)結(jié)構(gòu)。利用基于有限元分析法的COMSOL仿真軟件針對上述三種波導(dǎo)結(jié)構(gòu)進行了仿真計算,基于仿真計算的結(jié)果,對其模場分布、Fano共振及電磁傳輸特性進行了細致的探究。可知:耦合方環(huán)共振空腔波導(dǎo)結(jié)構(gòu)能夠產(chǎn)生單重Fano共振,其透射譜可通過改變共振空腔高度H實現(xiàn)調(diào)節(jié)。敏感度與品質(zhì)因數(shù)最高分別可達1180nm/RIU(單位折射率,Refractive Index Unit,RIU)與41099.1?,作為衡量納米光學(xué)開關(guān)性能優(yōu)劣的重要參數(shù),其消光比最高可達40.85dB,因此該波導(dǎo)結(jié)構(gòu)為納米光學(xué)開關(guān)的設(shè)計與應(yīng)用提供了可行性。耦合裂口方環(huán)共振空腔波導(dǎo)結(jié)構(gòu)通過裂口位置的不同,分別能夠產(chǎn)生Fano共振-洛倫茲共振及雙重Fano共振,其透射譜可通過改變共振空腔長度L和裂口大小W實現(xiàn)調(diào)節(jié)。敏感度與品質(zhì)因數(shù)最高分別可達1700 nm/RIU與51031.1?,已經(jīng)優(yōu)于許多已研究過的波導(dǎo)結(jié)構(gòu)。鑒于此,該波導(dǎo)結(jié)構(gòu)在納米生物傳感器設(shè)計方面展現(xiàn)出了良好的應(yīng)用前景。耦合方環(huán)共振空腔與耦合橫腔波導(dǎo)結(jié)構(gòu)能夠產(chǎn)生雙重Fano共振(左側(cè)Fano共振與右側(cè)Fano共振),并且透射譜中左側(cè)Fano共振只由方環(huán)共振空腔與波導(dǎo)相互作用產(chǎn)生,右側(cè)Fano共振只由耦合橫腔與波導(dǎo)相互作用產(chǎn)生。因此該雙重Fano共振分別只對方環(huán)共振空腔結(jié)構(gòu)參數(shù)及耦合橫腔結(jié)構(gòu)參數(shù)敏感,可通過改變方環(huán)共振空腔高度H實現(xiàn)對左側(cè)Fano共振的調(diào)節(jié),改變耦合橫腔長度L1實現(xiàn)對右側(cè)Fano共振的調(diào)節(jié)。該特性為波導(dǎo)結(jié)構(gòu)在納米光束分路器設(shè)計方向提供了良好的應(yīng)用前景。
[Abstract]:Surface plasmon (SPPs) is a new science based on surface plasmon (Surface Plasmon Polaritons,SPPs (SPPs), which is excited by the interaction of oscillating free electrons on metal surface and external photons. The surface electromagnetic wave mixing mode. SPPs, which can be strongly bound to the surface of dielectric and metal, can overcome the limitation of diffraction limit and make the system easier to integrate, combining with the nanotechnology, which is also developing rapidly. The surface plasmon waveguide based on SPPs is especially suitable for the design and fabrication of nanoscale photonic devices in integrated optical circuits. Based on MIM (Metal-Insulator-Metal,MIM) surface plasmon waveguide, a new type of cavity waveguide structure with coupled square ring resonant cavity is proposed in this paper, and the waveguide structure is partially improved. The structure of coupling split square ring resonant cavity waveguide and coupled square ring resonance cavity and coupling transverse cavity waveguide structure are proposed. The COMSOL simulation software based on finite element analysis is used to simulate the above three waveguide structures. Based on the simulation results, the characteristics of mode field distribution and electromagnetic transmission are studied in detail. The results show that the cavity waveguide structure with coupled square ring resonates can produce single Fano resonance and its transmission spectrum can be adjusted by changing the cavity height H. The highest sensitivity and quality factor can reach 1180nm/RIU (Unit Refractive Index Unit,RIU) and 41099.1g, respectively, which are important parameters to evaluate the performance of nano-optical switches. The extinction ratio is up to 40.85 dB, so the waveguide structure provides the feasibility for the design and application of nano-optical switch. The Fano resonance Lorentz resonance and double Fano resonance can be generated by the cavity waveguide structure of coupling split square ring resonance through the different positions of the crack. The transmission spectrum of the waveguide can be adjusted by changing the length of the cavity L and the size of the crack W. The highest sensitivity and quality factor can reach 1700 nm/RIU and 51031.1g, respectively, which are better than many waveguide structures that have been studied. In view of this, the waveguide structure has shown a good application prospect in the design of nanobiosensor. Coupled square ring resonator cavity and coupled transverse cavity waveguide structure can produce double Fano resonance (left Fano resonance and right Fano resonance). In transmission spectrum, the left Fano resonance is generated only by the square ring resonance cavity interacting with the waveguide. The right Fano resonance is generated only by the interaction between the coupled transverse cavity and the waveguide. Therefore, the double Fano resonance is sensitive to the structural parameters of the cavity and the transverse cavity, respectively, and can be adjusted to the left Fano resonance by changing the cavity height H of the square ring resonance. The right Fano resonance can be adjusted by changing the length of the coupling transverse cavity L1. This characteristic provides a good application prospect for waveguide structure in the design direction of nanoscale beam splitter.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN252
本文編號:2227171
[Abstract]:Surface plasmon (SPPs) is a new science based on surface plasmon (Surface Plasmon Polaritons,SPPs (SPPs), which is excited by the interaction of oscillating free electrons on metal surface and external photons. The surface electromagnetic wave mixing mode. SPPs, which can be strongly bound to the surface of dielectric and metal, can overcome the limitation of diffraction limit and make the system easier to integrate, combining with the nanotechnology, which is also developing rapidly. The surface plasmon waveguide based on SPPs is especially suitable for the design and fabrication of nanoscale photonic devices in integrated optical circuits. Based on MIM (Metal-Insulator-Metal,MIM) surface plasmon waveguide, a new type of cavity waveguide structure with coupled square ring resonant cavity is proposed in this paper, and the waveguide structure is partially improved. The structure of coupling split square ring resonant cavity waveguide and coupled square ring resonance cavity and coupling transverse cavity waveguide structure are proposed. The COMSOL simulation software based on finite element analysis is used to simulate the above three waveguide structures. Based on the simulation results, the characteristics of mode field distribution and electromagnetic transmission are studied in detail. The results show that the cavity waveguide structure with coupled square ring resonates can produce single Fano resonance and its transmission spectrum can be adjusted by changing the cavity height H. The highest sensitivity and quality factor can reach 1180nm/RIU (Unit Refractive Index Unit,RIU) and 41099.1g, respectively, which are important parameters to evaluate the performance of nano-optical switches. The extinction ratio is up to 40.85 dB, so the waveguide structure provides the feasibility for the design and application of nano-optical switch. The Fano resonance Lorentz resonance and double Fano resonance can be generated by the cavity waveguide structure of coupling split square ring resonance through the different positions of the crack. The transmission spectrum of the waveguide can be adjusted by changing the length of the cavity L and the size of the crack W. The highest sensitivity and quality factor can reach 1700 nm/RIU and 51031.1g, respectively, which are better than many waveguide structures that have been studied. In view of this, the waveguide structure has shown a good application prospect in the design of nanobiosensor. Coupled square ring resonator cavity and coupled transverse cavity waveguide structure can produce double Fano resonance (left Fano resonance and right Fano resonance). In transmission spectrum, the left Fano resonance is generated only by the square ring resonance cavity interacting with the waveguide. The right Fano resonance is generated only by the interaction between the coupled transverse cavity and the waveguide. Therefore, the double Fano resonance is sensitive to the structural parameters of the cavity and the transverse cavity, respectively, and can be adjusted to the left Fano resonance by changing the cavity height H of the square ring resonance. The right Fano resonance can be adjusted by changing the length of the coupling transverse cavity L1. This characteristic provides a good application prospect for waveguide structure in the design direction of nanoscale beam splitter.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TN252
【參考文獻】
相關(guān)期刊論文 前3條
1 陳慧斌;張志東;閆樹斌;焦國太;;基于半圓形與矩形諧振腔耦合結(jié)構(gòu)的Fano共振[J];光子學(xué)報;2016年08期
2 安厚霖;張冠茂;胡南;石悅;王志爽;;基于耦合T型空腔的多重法諾共振現(xiàn)象[J];光子學(xué)報;2016年11期
3 石振東;趙海發(fā);劉建龍;劉樹田;;基于表面等離激元的金屬波導(dǎo)全光開關(guān)設(shè)計[J];光學(xué)學(xué)報;2015年02期
相關(guān)碩士學(xué)位論文 前2條
1 孫海麗;對稱混合長程表面等離子體激元波導(dǎo)傳輸特性研究[D];蘭州大學(xué);2014年
2 趙宏;介質(zhì)加載表面等離子體極化波導(dǎo)傳輸特性研究[D];蘭州大學(xué);2012年
,本文編號:2227171
本文鏈接:http://www.lk138.cn/kejilunwen/dianzigongchenglunwen/2227171.html
最近更新
教材專著