中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

探地雷達目標(biāo)識別方法及其在隧道襯砌檢測中的應(yīng)用研究

發(fā)布時間:2019-06-22 12:23
【摘要】:隨著我國高速公路干線網(wǎng)的不斷完善和發(fā)展,公路隧道的規(guī)模與數(shù)量也在不斷增長。為了避免隧道開挖過程中及建成后的運營階段發(fā)生事故而影響到人們生命財產(chǎn)的安全,需要運用合適的物探工具對隧道襯砌進行質(zhì)量檢測。探地雷達以其快速、高效、高分辨率及無損性等優(yōu)點而受到隧道工作者的青睞。對于襯砌檢測中出現(xiàn)的襯砌脫空、不密實體、空洞充水三種典型病害,可歸類于形狀、大小各異的空洞中填充了不同物質(zhì)。本文通過使用探地雷達對物理模型進行探測獲取試驗數(shù)據(jù),研究、建立空洞不同填充物質(zhì)的分類識別方法,進而將此方法運用于隧道襯砌檢測的病害分類識別中,主要研究內(nèi)容如下:(1)通過物理模型試驗分別獲取空洞填充干沙、碎石、泥漿、水等物質(zhì)相應(yīng)的初始雷達數(shù)據(jù),并運用本文總結(jié)的探地雷達數(shù)據(jù)預(yù)處理流程對其進行處理;從而進一步總結(jié)分析隧道襯砌檢測中常見的襯砌脫空、不密實體、空洞積水三種病害典型雷達圖像。(2)介紹了探地雷達振幅、頻譜、相干性三種屬性提取技術(shù),結(jié)合雷達屬性的物理意義,選取均方根振幅、平均波峰振幅、時域平均能量、相似系數(shù)及-3dB帶寬平均相位五種雷達屬性作為探地雷達目標(biāo)分類識別的特征參數(shù)。(3)通過建立空洞不同填充物的高斯過程機器學(xué)習(xí)二元分類(GPC)模型,以均方根振幅、平均波峰振幅、時域平均能量、相似系數(shù)及-3dB帶寬平均相位五種雷達屬性作為矢量輸入,成功識別出物理模型各空洞中分別填充空氣、碎石、泥漿和水時四種物質(zhì),并給出相應(yīng)預(yù)測概率。(4)將經(jīng)物理模型試驗驗證后的GPC預(yù)測模型運用到岑溪大隧道襯砌檢測實際工程中,成功對脫空、不密實體、空洞充水三種襯砌病害進行分類識別。說明本文所提出的探地雷達隧道襯砌檢測高斯預(yù)測模型是可行的,有很好的應(yīng)用前景。
[Abstract]:With the continuous improvement and development of highway trunk network in China, the scale and number of highway tunnels are also increasing. In order to avoid accidents in the process of tunnel excavation and after completion and affect the safety of people's lives and property, it is necessary to use appropriate geophysical tools to detect the quality of tunnel lining. Ground penetrating radar (GPR) is favored by tunnel workers because of its advantages of fast, high efficiency, high resolution and no damage. For the three typical diseases of lining emptiness, indense solid and empty water filling in lining detection, they can be classified into voids of different sizes and shapes and filled with different substances. In this paper, the experimental data are obtained by using ground penetrating radar (GPR) to detect the physical model, and the classification and identification method of different filling materials of voids is established, and then this method is applied to the disease classification and identification of tunnel lining. The main research contents are as follows: (1) the initial radar data of dry sand, gravel, mud, water and other substances filled with voids are obtained respectively through the physical model test. The data preprocessing process of ground penetrating radar (GPR) summarized in this paper is used to process GPR data. In order to further summarize and analyze the typical radar images of three kinds of diseases such as empty lining, undense entity and empty water in tunnel lining detection. (2) three attribute extraction techniques of GPR amplitude, spectrum and coherence are introduced. combined with the physical meaning of radar attribute, root mean square amplitude, average wave peak amplitude and time domain average energy are selected. Five radar attributes of similarity coefficient and average phase of-3dB bandwidth are used as characteristic parameters of target classification and recognition of ground penetrating radar (GPR). (3) five radar attributes, root mean square amplitude, average peak amplitude, average energy in time domain, similarity coefficient and average phase of-3dB bandwidth, are used as vector inputs by establishing machine learning binary classification (GPC) model for different fillers of voids. The four substances filled with air, gravel, mud and water in each cavity of the physical model are successfully identified, and the corresponding prediction probabilities are given. (4) the GPC prediction model verified by the physical model test is applied to the actual lining detection project of Cengxi tunnel, and the three lining diseases of emptiness, indense entity and empty water filling are successfully classified and identified. It is shown that the Gaussian prediction model for GPR tunnel lining detection proposed in this paper is feasible and has a good application prospect.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U455.91

【參考文獻】

相關(guān)期刊論文 前10條

1 洪旭程;李秀榮;;隧道襯砌檢測中探地雷達圖像的自動識別[J];工程地球物理學(xué)報;2015年06期

2 楊艷青;高永濤;賀少輝;齊法琳;;隧道襯砌背后積水地質(zhì)雷達檢測模型試驗研究[J];中國鐵道科學(xué);2014年06期

3 劉東坤;巨能攀;霍宇翔;;地質(zhì)雷達在不同介質(zhì)填充下的頻譜差異分析[J];現(xiàn)代隧道技術(shù);2013年05期

4 周輝林;姜玉玲;徐立紅;梁國卿;;基于SVM的高速公路路基病害自動檢測算法[J];中國公路學(xué)報;2013年02期

5 楊艷青;賀少輝;齊法琳;劉建瑞;江波;;鐵路隧道復(fù)合式襯砌地質(zhì)雷達檢測模擬試驗研究[J];巖土工程學(xué)報;2012年06期

6 周斌;趙峰;江劍;劉偉;;探地雷達在隧道襯砌缺陷檢測中的應(yīng)用[J];鐵道工程學(xué)報;2012年05期

7 張研;蘇國韶;燕柳斌;;基于高斯過程機器學(xué)習(xí)方法的隧道圍巖分類模型[J];現(xiàn)代隧道技術(shù);2011年06期

8 張研;蘇國韶;燕柳斌;;基于高斯過程機器學(xué)習(xí)的巖爆等級識別方法[J];地下空間與工程學(xué)報;2011年02期

9 徐沖;劉保國;劉開云;郭佳奇;;基于組合核函數(shù)的高斯過程邊坡角智能設(shè)計[J];巖土力學(xué);2010年03期

10 倪章勇;李海;;地質(zhì)雷達解釋隧道襯砌空洞大小的定量研究[J];鐵道勘察;2010年01期

相關(guān)會議論文 前1條

1 謝雄耀;覃暉;;探地雷達探測隧道襯砌鋼筋的神經(jīng)網(wǎng)絡(luò)識別方法[A];2010年全國工程地質(zhì)學(xué)術(shù)年會暨“工程地質(zhì)與海西建設(shè)”學(xué)術(shù)大會論文集[C];2010年

相關(guān)博士學(xué)位論文 前2條

1 趙文軻;探地雷達屬性技術(shù)及其在考古調(diào)查中的應(yīng)用研究[D];浙江大學(xué);2013年

2 劉敦文;地下巖體工程災(zāi)害隱患雷達探測與控制研究[D];中南大學(xué);2001年

相關(guān)碩士學(xué)位論文 前10條

1 李政;探地雷達在公路隧道中的應(yīng)用研究[D];廣西大學(xué);2014年

2 秦存昌;隧道病害的探地雷達圖像檢測方法研究[D];南昌大學(xué);2014年

3 項雷;公路隧道檢測中探地雷達圖像自動解釋算法研究[D];南昌大學(xué);2013年

4 胡本清;GPR在巖溶區(qū)隧道地質(zhì)災(zāi)害中的應(yīng)用研究[D];華東交通大學(xué);2012年

5 魏三喜;基于高斯過程的分類算法及其應(yīng)用研究[D];華南理工大學(xué);2012年

6 陳家博;公路隧道不良地質(zhì)體探地雷達圖像解譯分析[D];湘潭大學(xué);2012年

7 江凱;探地雷達在路基檢測中的應(yīng)用研究[D];西南交通大學(xué);2011年

8 秦承彬;探地雷達在隧道超前地質(zhì)預(yù)報與襯砌檢測中的應(yīng)用研究[D];西南交通大學(xué);2011年

9 楊曉晶;基于EMD和高斯過程回歸組合模型的短期電力負荷預(yù)測方法研究[D];昆明理工大學(xué);2010年

10 胡玉理;探地雷達地下目標(biāo)特征提取與識別[D];國防科學(xué)技術(shù)大學(xué);2009年

,

本文編號:2504578

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2504578.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶99787***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com