中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 科技論文 > 路橋論文 >

黃土高填方路堤沉降規(guī)律及預(yù)測(cè)研究

發(fā)布時(shí)間:2019-06-19 08:38
【摘要】:在我國(guó)經(jīng)濟(jì)高速發(fā)展的今天,高等級(jí)公路里程和密度都得到了很大的提高。對(duì)于地形復(fù)雜的山區(qū)筑路,高填方路堤這種結(jié)構(gòu)形式是極其常見的。在黃土分布比較廣的地區(qū),為了提高路堤填筑的經(jīng)濟(jì)性,常常以黃土為主要填料。因此,在了解黃土填料物理力學(xué)特性的基礎(chǔ)上,對(duì)黃土高填方路堤的沉降規(guī)律及預(yù)測(cè)進(jìn)行研究尤為必要。本文以太原市太行路工程閻家峰路段的高填方路堤為研究對(duì)象,首先對(duì)高填方路堤工后沉降進(jìn)行了歷時(shí)一年的沉降監(jiān)測(cè);與此同時(shí),對(duì)現(xiàn)場(chǎng)取得的不同深度的壓實(shí)土樣進(jìn)行室內(nèi)土工試驗(yàn)。以室外沉降監(jiān)測(cè)數(shù)據(jù)和室內(nèi)土工試驗(yàn)數(shù)據(jù)為基礎(chǔ)數(shù)據(jù),對(duì)黃土高填方路堤的沉降規(guī)律及預(yù)測(cè)進(jìn)行研究。主要研究?jī)?nèi)容和結(jié)論敘述如下:1.黃土的物理力學(xué)特性。對(duì)取得的不同深度處的壓實(shí)土樣進(jìn)行土工試驗(yàn),研究了黃土的粒徑級(jí)配,液塑限,最大干密度對(duì)應(yīng)的最優(yōu)含水量,以及壓縮特性。試驗(yàn)結(jié)果表明:(1)填方體孔隙比隨著填方深度近似呈1/4正弦波周期性變化,重錘補(bǔ)夯界面處孔隙比最小。(2)高填方路堤經(jīng)分層碾壓及重錘補(bǔ)夯后壓縮性明顯降低,均變?yōu)橹械蛪嚎s性土。(3)黃土具有壓硬特性,即隨著應(yīng)力水平的提升,側(cè)限壓縮模量會(huì)變大。2.黃土高填方路堤沉降監(jiān)測(cè)結(jié)果。在黃土高填方路堤縱向上選取五個(gè)斷面進(jìn)行沉降監(jiān)測(cè),監(jiān)測(cè)結(jié)果表明:(1)根據(jù)沉降孔中沉降磁環(huán)的埋設(shè)位置,將高填方路堤大致分為四層土,其中第二層土和第三層土的沉降變化速率較快,壓縮量較大;第一層和第四層土的沉降變化速率較穩(wěn)定,壓縮量較小。(2)高填方路堤在沉降前期大約8個(gè)月之內(nèi)沉降速率較快,隨后沉降速率變緩,最終沉降趨于穩(wěn)定。(3)高填方路堤沉降值受填方高度,地形影響比較大,如果填方高度越低,地基在地形上對(duì)路堤的約束越強(qiáng),那么路堤的沉降值也越小;原地基沉降約占路堤總沉降的10%,高填方路堤堤身沉降值s與填方高度h之間的線性擬合關(guān)系式為:s=1.109h-3.3889。3.黃土高填方路堤沉降預(yù)測(cè)。如果把高填方路堤沉降值隨著時(shí)間的變化規(guī)律看作一個(gè)系統(tǒng),由于高填方路堤沉降監(jiān)測(cè)得到的原始數(shù)據(jù)較少,也就是說(shuō),這個(gè)沉降系統(tǒng)是一個(gè)小樣本,貧信息的灰色系統(tǒng),那么用灰色系統(tǒng)理論來(lái)研究這個(gè)灰色的系統(tǒng)將更為有效。本預(yù)測(cè)根據(jù)鄧聚蘢教授于1982年提出的均值GM(1,1)模型,利用三次樣條插值函數(shù)生成該模型所需要的灰序列,通過(guò)模型運(yùn)算,得到了高填方路堤K4+050斷面中點(diǎn)處沉降前期和后期的沉降~時(shí)間響應(yīng)式分別為:(?)~(0)(t)=7.980)0.216(-1)和(?)~(0)(t)=26.760)0.009(-1),其中t=2,3,...,n。兩個(gè)時(shí)期原始序列和預(yù)測(cè)序列的灰色接近關(guān)聯(lián)度01分別為0.65和0.998,平均絕對(duì)百分誤差MAPE分別為7.65和0.61,即沉降后期的01要高于沉降前期,MAPE要低于沉降前期,用灰色系統(tǒng)理論對(duì)高填方路堤后期沉降進(jìn)行灰色建模,預(yù)測(cè)結(jié)果精確性將更高。4.關(guān)于黃土高填方路堤沉降的有限元補(bǔ)充分析。根據(jù)實(shí)際工程簡(jiǎn)化出有限元分析模型,通過(guò)ANSYS有限元分析軟件,得到高填方路堤等效應(yīng)力云圖和水平、豎向位移云圖,通過(guò)有限元分析結(jié)果可以發(fā)現(xiàn):(1)路堤填料經(jīng)過(guò)分層碾壓及重錘補(bǔ)夯綜合處理后,高填方路堤在自重應(yīng)力作用下路面沉降較小。(2)高填方路堤坡腳處水平位移偏大,施工時(shí)得加強(qiáng)對(duì)該區(qū)域土體的壓實(shí)處理。
[Abstract]:Today, the high-grade highway mileage and density have been greatly improved in the high-speed development of our country. The structural form of high-filled embankment is very common for road-building in mountainous areas with complex terrain. In the area with a wide distribution of loess, in order to improve the economy of the filling of the embankment, the loess is often used as the main filler. Therefore, on the basis of understanding the physical and mechanical properties of the loess, it is especially necessary to study the settlement rule and the prediction of the high-fill embankment of the loess. In this paper, based on the high-fill embankment of Yan 'a peak section of Taiyuan Taihang Road Project, the settlement monitoring of the high-fill embankment is carried out for a period of one year. At the same time, the indoor geotechnical test is carried out on the compacted soil samples at different depths. Based on the outdoor settlement monitoring data and the indoor geotechnical test data, the settlement rule and the prediction of the high-fill embankment of the loess are studied. The main research contents and conclusions are as follows:1. Physical and mechanical properties of loess. The compaction soil samples at different depths are subjected to soil test, and the optimal water content and the compression property of the loess are studied. The results of the test show that (1) The void ratio of the fill body is approximately 1/4 sine wave periodic variation with the filling depth, and the aperture ratio at the interface of the heavy hammer is the smallest. (2) The compressibility of the high-filled embankment is obviously reduced after the layered rolling and the weight-filling and the compaction of the heavy hammer are obviously reduced, and the high-fill embankment becomes the low-compressibility soil. (3) The loess has the pressure-hard property, that is, with the increase of the stress level, the compression modulus of the lateral limit increases. The results of the settlement monitoring of the high-fill embankment of loess. In the longitudinal direction of the loess high-fill embankment, five sections are selected for settlement monitoring, and the monitoring results show that: (1) According to the buried position of the settlement magnetic ring in the settlement hole, the high-fill embankment is roughly divided into four layers of soil, wherein the settlement change rate of the second layer soil and the third layer soil is faster, The compression amount is large, the settlement change rate of the first layer and the fourth layer soil is relatively stable, and the compression amount is small. (2) The settlement rate of the high-filled embankment is faster in the first 8 months before the settlement, and then the settlement rate is slow, and the final settlement is stable. (3) The settlement value of the high-fill embankment is affected by the filling height and the terrain, and if the height of the fill is lower, the stronger the foundation's constraint on the embankment on the terrain, the smaller the settlement value of the embankment, and the settlement of the original foundation accounts for 10% of the total settlement of the embankment, The linear fitting relation between the settlement value s and the filling height h of the high-fill embankment is: s = 1.109h-3.3889.3. Settlement prediction of high-fill embankment in loess. if that settlement value of the high fill embankment is view as a system with time, the raw data obtained due to the high fill embankment settlement monitoring is less, that is, the settlement system is a small sample, the poor information gray system, Then the grey system theory is used to study the grey system to be more efficient. According to the mean GM (1,1) model proposed by Prof. Deng Juli in 1982, the three-spline interpolation function is used to generate the grey sequence required by the model, and the settlement-time-response formula at the middle point of the K4 + 050 section of the high-fill embankment is obtained by means of the model operation: (? ) ~ (0) (t) = 7.980) 0.216 (-1) and (? ) ~ (0) (t) = 26.760) 0.009 (-1), where t = 2,3,... and the average absolute percent error MAPE is 7.65 and 0.61 respectively, i.e.,01 in the late settling period is higher than the pre-settling period, and the MAPE is lower than the settling period, The grey system theory is used to model the post-settlement of the high-fill embankment, and the accuracy of the prediction results will be higher. Finite element supplementary analysis on the settlement of high-fill embankment in loess. according to the practical engineering, the finite element analysis model is simplified, the effect force cloud image and the horizontal and vertical displacement cloud image of the high-fill embankment are obtained through the ANSYS finite element analysis software, The settlement of the high-fill embankment under the self-weight stress is small. (2) The horizontal displacement at the toe of the embankment of the high fill road is too large, and the compaction of the soil in the area shall be strengthened during construction.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U416.12

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 余湘娟;殷宗澤;高磊;;軟土的一維次固結(jié)雙曲線流變模型研究[J];巖土力學(xué);2015年02期

2 周殷康;閻長(zhǎng)虹;邵勇;吳煥然;段成龍;張馳;;考慮側(cè)向變形的軟土地基沉降計(jì)算方法研究[J];水文地質(zhì)工程地質(zhì);2015年01期

3 金耀華;呂凡任;;基于三向變形的地基沉降實(shí)用計(jì)算方法[J];揚(yáng)州職業(yè)大學(xué)學(xué)報(bào);2014年04期

4 侯曉坤;李同錄;李萍;;開挖黃土高邊坡的應(yīng)力路徑及變形破壞機(jī)制分析[J];巖土力學(xué);2014年S2期

5 楊晶;白曉紅;;對(duì)采用割線模量法進(jìn)行沉降計(jì)算所存在問(wèn)題的探討[J];太原理工大學(xué)學(xué)報(bào);2014年02期

6 高成雷;趙文忠;凌建明;王丙興;;山區(qū)公路半填半挖路基沉降控制指標(biāo)與標(biāo)準(zhǔn)研究[J];巖土力學(xué);2014年01期

7 潘翔;;地基沉降預(yù)測(cè)的兩種灰色模型與Asaoka法[J];地下空間與工程學(xué)報(bào);2013年06期

8 侯晉芳;喻志發(fā);李明英;寇曉強(qiáng);;鋼圍堰結(jié)構(gòu)下軟土地基固結(jié)沉降分析[J];巖土工程學(xué)報(bào);2013年S2期

9 高燕希;莫志兵;魏金勝;;指數(shù)曲線法在軟土地基沉降預(yù)測(cè)中的優(yōu)化與應(yīng)用[J];交通科學(xué)與工程;2011年02期

10 馮志剛;朱俊高;;軟土次固結(jié)變形特性試驗(yàn)研究[J];水利學(xué)報(bào);2009年05期

相關(guān)會(huì)議論文 前1條

1 王志杰;;巖石內(nèi)摩擦角φ和巖石粘結(jié)力c的性質(zhì)[A];第十屆全國(guó)巖石力學(xué)與工程學(xué)術(shù)大會(huì)論文集[C];2008年

相關(guān)博士學(xué)位論文 前3條

1 楊晶;黃土狀壓實(shí)填土壓縮和強(qiáng)度特性研究[D];太原理工大學(xué);2014年

2 張永清;山區(qū)高速公路路基差異沉降特性與控制措施研究[D];長(zhǎng)安大學(xué);2009年

3 張衛(wèi)兵;黃土高填方路堤沉降變形規(guī)律與計(jì)算方法的研究[D];長(zhǎng)安大學(xué);2007年

相關(guān)碩士學(xué)位論文 前10條

1 陳亞沛;煙臺(tái)金山港地區(qū)軟土地基沉降特性與穩(wěn)定性研究[D];長(zhǎng)安大學(xué);2014年

2 劉昭;高速鐵路路基沉降現(xiàn)場(chǎng)測(cè)試與理論計(jì)算研究[D];長(zhǎng)安大學(xué);2013年

3 梁曉波;非飽和壓實(shí)黃土本構(gòu)模型研究[D];蘭州大學(xué);2011年

4 沈建軍;軟土地基沉降組合預(yù)測(cè)研究[D];山東大學(xué);2010年

5 江偉;基于摩爾—庫(kù)侖模型軟基沉降預(yù)測(cè)研究[D];長(zhǎng)沙理工大學(xué);2009年

6 張登攀;路基沉降觀測(cè)數(shù)據(jù)處理及預(yù)測(cè)模型研究[D];長(zhǎng)沙理工大學(xué);2008年

7 秦亞瓊;基于實(shí)測(cè)數(shù)據(jù)的路基沉降預(yù)測(cè)方法研究及工程應(yīng)用[D];中南大學(xué);2008年

8 李奕;黃土的結(jié)構(gòu)性試驗(yàn)研究[D];蘭州理工大學(xué);2007年

9 徐曉宇;高填方路基沉降變形特性及其預(yù)測(cè)方法研究[D];長(zhǎng)沙理工大學(xué);2005年

10 張俊;高填方黃土路堤沉降規(guī)律研究[D];長(zhǎng)安大學(xué);2004年

,

本文編號(hào):2502223

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2502223.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bfb8c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com