中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

運(yùn)用不確定性方法估計(jì)高速公路基本路段交通狀態(tài)

發(fā)布時(shí)間:2019-06-13 21:28
【摘要】:高速公路交通狀態(tài)的準(zhǔn)確估計(jì)是把握高速公路交通運(yùn)行情況的關(guān)鍵。單一交通流參數(shù)只能間接、局部的反映實(shí)際的交通運(yùn)行狀況,依據(jù)多個(gè)不同交通流參數(shù)進(jìn)行聚類分析是地點(diǎn)交通狀態(tài)估計(jì)的典型方法,但聚類結(jié)果對(duì)樣本數(shù)量非常敏感;另一方面,目前對(duì)路段交通狀態(tài)的估計(jì)一般只考慮行程時(shí)間或行程車速,因數(shù)據(jù)采集手段的限制,估計(jì)的交通狀態(tài)存在一定不確定性。針對(duì)這些問題展開研究,對(duì)改善高速公路交通狀態(tài)估計(jì)系統(tǒng)應(yīng)用效果具有實(shí)際意義。論文以高速公路基本路段為研究對(duì)象,運(yùn)用不確定性方法來估計(jì)高速公路基本路段的地點(diǎn)和路段的交通狀態(tài)。在地點(diǎn)交通狀態(tài)估計(jì)中,以交通流參數(shù)樣本點(diǎn)空間分布的不均衡性分析為突破口,重點(diǎn)解決樣本數(shù)量不均衡性對(duì)交通狀態(tài)聚類結(jié)果影響;在路段交通狀態(tài)估計(jì)中,重點(diǎn)針對(duì)交通狀態(tài)估計(jì)的不確定性問題,采用多源數(shù)據(jù)融合的方法加以解決。主要研究內(nèi)容包括:①高速公路基本路段交通流參數(shù)特性的分析。首先,對(duì)地點(diǎn)交通流參數(shù)的時(shí)間相關(guān)性和樣本點(diǎn)空間分布的不均衡性進(jìn)行了分析;然后,對(duì)路段交通流參數(shù)估計(jì)交通狀態(tài)時(shí)存在的不確定性進(jìn)行了分析,為后面地點(diǎn)和路段交通狀態(tài)估計(jì)模型的建立奠定了基礎(chǔ)。②基于特征參數(shù)加權(quán)GEFCM算法的高速公路地點(diǎn)交通狀態(tài)估計(jì)模型的建立。針對(duì)傳統(tǒng)模糊聚類算法在交通狀態(tài)估計(jì)時(shí)存在的不足,結(jié)合樣本分布的不均衡性以及不同特征參數(shù)對(duì)于聚類影響權(quán)重的差異性,建立特征參數(shù)加權(quán)GEFCM算法的地點(diǎn)交通狀態(tài)估計(jì)模型,并通過主成分分析法確定了不同特征參數(shù)在模型中的權(quán)重值,實(shí)驗(yàn)表明本文方法具有更好可靠性與適應(yīng)性。③基于動(dòng)態(tài)貝葉斯網(wǎng)絡(luò)多源數(shù)據(jù)融合的高速公路路段交通狀態(tài)估計(jì)模型的建立。針對(duì)采用路段相對(duì)密度和路段平均行程時(shí)間估計(jì)交通狀態(tài)時(shí)存在的不確定性問題,引入動(dòng)態(tài)貝葉斯網(wǎng)絡(luò),在研究選取相對(duì)密度、平均行程時(shí)間和交通狀態(tài)為節(jié)點(diǎn)變量的基礎(chǔ)上,確定了網(wǎng)絡(luò)的拓?fù)浣Y(jié)構(gòu),并最終研究建立了用于狀態(tài)估計(jì)的動(dòng)態(tài)貝葉斯網(wǎng)絡(luò)模型,實(shí)驗(yàn)表明本文方法具有更好的可靠性。最后,對(duì)系統(tǒng)進(jìn)行了設(shè)計(jì)與實(shí)現(xiàn),并應(yīng)用于渝武高速公路部分路段的地點(diǎn)和路段交通狀態(tài)估計(jì)。結(jié)果表明:本文方法對(duì)地點(diǎn)和路段交通狀態(tài)的估計(jì)結(jié)果相比較對(duì)比的方法均具有更高的擁擠判別率和更低的擁擠誤判率。
[Abstract]:The accurate estimation of highway traffic condition is the key to grasp the traffic operation of expressway. The single traffic flow parameter can only indirectly reflect the actual traffic operation condition. Cluster analysis according to many different traffic flow parameters is a typical method of location traffic state estimation, but the clustering results are very sensitive to the number of samples. On the other hand, at present, the estimation of the traffic state of the road section generally only considers the travel time or the travel speed, because of the limitation of the data acquisition means, there is a certain uncertainty in the estimated traffic state. The research on these problems is of practical significance to improve the application effect of highway traffic state estimation system. In this paper, the basic section of expressway is taken as the research object, and the uncertainty method is used to estimate the location and traffic state of the basic section of expressway. In the traffic state estimation of the location, the uneven analysis of the spatial distribution of the sample points of the traffic flow parameters is taken as the breakthrough point, and the influence of the imbalance of the number of samples on the clustering results of the traffic state is solved. In the traffic state estimation of the road section, the uncertainty problem of the traffic state estimation is solved by the method of multi-source data fusion. The main research contents are as follows: 1. Analysis of traffic flow parameters in basic sections of expressway. Firstly, the temporal correlation of location traffic flow parameters and the imbalance of spatial distribution of sample points are analyzed. Then, the uncertainty of road section traffic flow parameters estimation traffic state is analyzed, which lays a foundation for the establishment of traffic state estimation model of rear location and road section. (2) the establishment of highway location traffic state estimation model based on characteristic parameter weighted GEFCM algorithm. In view of the shortcomings of traditional fuzzy clustering algorithm in traffic state estimation, combined with the imbalance of sample distribution and the difference of influence weight of different characteristic parameters on clustering, the location traffic state estimation model of feature parameter weighted GEFCM algorithm is established, and the weight values of different characteristic parameters in the model are determined by principal component analysis (PCA). The experimental results show that the proposed method has better reliability and adaptability. (3) the traffic state estimation model of expressway section based on dynamic Bayesian network multi-source data fusion is established. In order to solve the uncertainty problem of using relative density of road section and average travel time of road section to estimate traffic state, dynamic Bayesian network is introduced. On the basis of selecting relative density, average travel time and traffic state as node variables, the topological structure of the network is determined, and finally a dynamic Bayesian network model for state estimation is established. The experimental results show that the proposed method has better reliability. Finally, the system is designed and implemented and applied to the location and traffic state estimation of some sections of Yuwu Expressway. The results show that the proposed method has higher congestion discrimination rate and lower congestion misjudgment rate compared with the estimation results of location and road traffic state.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:U491

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 韓悅臻,曹三鵬;城市道路交通狀態(tài)指標(biāo)體系設(shè)計(jì)探討[J];公路;2005年06期

2 皮曉亮;王正;韓皓;孫亞;;基于環(huán)形線圈檢測(cè)器采集信息的交通狀態(tài)分類方法應(yīng)用研究[J];公路交通科技;2006年04期

3 勞云騰;楊曉光;云美萍;劉競宇;;交通狀態(tài)檢測(cè)方法的評(píng)價(jià)研究[J];交通與計(jì)算機(jī);2006年06期

4 王偉;楊兆升;李貽武;劉新杰;陳昕;;基于信息協(xié)同的子區(qū)交通狀態(tài)加權(quán)計(jì)算與判別方法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2007年03期

5 戢曉峰;;城市道路交通狀態(tài)分析方法回顧與展望[J];道路交通與安全;2008年03期

6 李娟;羅霞;姚琛;;基于多源數(shù)據(jù)的交通狀態(tài)判定研究[J];鐵道運(yùn)輸與經(jīng)濟(jì);2009年03期

7 李清泉;高德荃;楊必勝;;基于模糊支持向量機(jī)的城市道路交通狀態(tài)分類[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2009年S2期

8 強(qiáng)添綱;邱潔;;基于熵和耗散結(jié)構(gòu)理論的道路交通狀態(tài)演變機(jī)理[J];交通標(biāo)準(zhǔn)化;2010年Z1期

9 竇慧麗;王國華;;基于模糊聚類和判別分析的交通狀態(tài)提取算法[J];交通信息與安全;2010年02期

10 曹成濤;崔鳳;林曉輝;;基于神經(jīng)網(wǎng)絡(luò)的交通狀態(tài)模糊判別方法[J];科學(xué)技術(shù)與工程;2010年21期

相關(guān)會(huì)議論文 前3條

1 郭義榮;張曉棟;董寶田;吳蕾;;基于模糊理論的交通狀態(tài)快速識(shí)別與躍遷轉(zhuǎn)變方法[A];2013年中國智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第四分冊(cè))[C];2013年

2 竇瑞;云美萍;楊曉光;;基于視頻錄像的交通狀態(tài)判別算法準(zhǔn)確度評(píng)測(cè)[A];第七屆中國智能交通年會(huì)優(yōu)秀論文集——智能交通技術(shù)[C];2012年

3 余碧瑩;邵春福;;基于時(shí)空模型的道路網(wǎng)交通狀態(tài)預(yù)測(cè)[A];2008第四屆中國智能交通年會(huì)論文集[C];2008年

相關(guān)博士學(xué)位論文 前8條

1 徐東偉;道路交通狀態(tài)多維多粒度獲取方法研究[D];北京交通大學(xué);2014年

2 宋淑敏;非常態(tài)下異常道路交通狀態(tài)信息獲取技術(shù)研究[D];吉林大學(xué);2012年

3 許昱瑋;VANETs中面向交通狀態(tài)的車輛主動(dòng)探測(cè)方法研究[D];南開大學(xué);2012年

4 孫曉亮;城市道路交通狀態(tài)評(píng)價(jià)和預(yù)測(cè)方法及應(yīng)用研究[D];北京交通大學(xué);2013年

5 錢U,

本文編號(hào):2498827


資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2498827.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶0c413***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com