基于智能技術(shù)的交通流區(qū)間預(yù)測(cè)方法研究
[Abstract]:With the continuous development of urbanization, the contradiction between the rapid growth of traffic flow and the slow growth of road infrastructure is becoming more and more prominent. Especially, the congestion phenomenon of mega-cities is becoming more and more serious, which has seriously restricted the sustainable development strategy of urban traffic in our country. Intelligent urban traffic system (ITS) is regarded as one of the effective methods to alleviate these problems. Therefore, based on the multi-section similarity, the traffic flow interval prediction method is discussed in this paper. The idea of this paper is based on the obtained historical data, based on the existing traffic flow prediction technology, the change law of traffic flow data is analyzed, its development trend is studied and summarized, in order to achieve the purpose of accurate prediction of the change trend of traffic flow in the future. The main research work of this paper is as follows: (1) the internal correlation of traffic flow data is analyzed, and the correlation and characteristics of traffic flow data are discussed and processed with time series as a tool. (2) the cross-section correlation of traffic flow data is analyzed, two or more adjacent points are regarded as a whole, and the changing trend of traffic flow and many factors causing the change are analyzed. A prediction algorithm based on multi-section correlation is proposed, and the corresponding analysis method is given. (3) combined with the above analysis methods based on time and space correlation, the conventional traffic flow prediction algorithm is improved, and the confidence interval of the point prediction results is calculated, thus the prediction interval is obtained, and the traffic flow interval prediction algorithm based on multi-section correlation is proposed. The main body of the prediction method is the support vector machine (SVM) regression model. (4) the above prediction method is further improved and enhanced, and the Boosting enhancement algorithm is introduced. By using resampling technology to reset and combine the weights automatically, the algorithm hopes to improve the performance of the classifiers by selecting and training the data many times. The core idea is to train the samples which are relatively difficult to be classified correctly when training the new classifiers.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U491.14
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉齊林;曾玲;曾祥艷;;基于支持向量機(jī)的區(qū)間模糊數(shù)時(shí)間序列預(yù)測(cè)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2015年22期
2 劉巖;張寧;邵星杰;;城市軌道交通斷面客流短時(shí)預(yù)測(cè)[J];都市快軌交通;2015年01期
3 周桐;楊智勇;孫棣華;魏方強(qiáng);;分車型的高速公路短時(shí)交通流量預(yù)測(cè)方法研究[J];計(jì)算機(jī)應(yīng)用研究;2015年07期
4 王惟;;一種基于粒子群優(yōu)化SVM的交通流量預(yù)測(cè)方法[J];運(yùn)城學(xué)院學(xué)報(bào);2014年02期
5 朱征宇;劉琳;崔明;;一種結(jié)合SVM與卡爾曼濾波的短時(shí)交通流預(yù)測(cè)模型[J];計(jì)算機(jī)科學(xué);2013年10期
6 袁健;范炳全;;交通流短時(shí)預(yù)測(cè)研究進(jìn)展[J];城市交通;2012年06期
7 于濱;鄔珊華;王明華;趙志宏;;K近鄰短時(shí)交通流預(yù)測(cè)模型[J];交通運(yùn)輸工程學(xué)報(bào);2012年02期
8 丁世飛;齊丙娟;譚紅艷;;支持向量機(jī)理論與算法研究綜述[J];電子科技大學(xué)學(xué)報(bào);2011年01期
9 姚智勝;邵春福;;基于狀態(tài)空間模型的道路交通狀態(tài)多點(diǎn)時(shí)間序列預(yù)測(cè)[J];中國(guó)公路學(xué)報(bào);2007年04期
10 楊兆升;王媛;管青;;基于支持向量機(jī)方法的短時(shí)交通流量預(yù)測(cè)方法[J];吉林大學(xué)學(xué)報(bào)(工學(xué)版);2006年06期
相關(guān)博士學(xué)位論文 前3條
1 傅貴;城市智能交通動(dòng)態(tài)預(yù)測(cè)模型的研究及應(yīng)用[D];華南理工大學(xué);2014年
2 崔立成;基于多斷面信息的城市道路網(wǎng)交通流預(yù)測(cè)方法研究[D];大連海事大學(xué);2012年
3 李星毅;基于相似性的交通流分析方法[D];北京交通大學(xué);2010年
相關(guān)碩士學(xué)位論文 前1條
1 劉海紅;交通流狀態(tài)非參數(shù)辨識(shí)關(guān)鍵理論及方法研究[D];山東理工大學(xué);2007年
,本文編號(hào):2498694
本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2498694.html