中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁 > 科技論文 > 路橋論文 >

交通誘導(dǎo)系統(tǒng)中車流量預(yù)測(cè)與路徑誘導(dǎo)算法研究

發(fā)布時(shí)間:2018-11-20 22:01
【摘要】:近年來,隨著社會(huì)經(jīng)濟(jì)的發(fā)展,交通擁堵、交通事故等交通問題日益突出。為了應(yīng)對(duì)這些問題,交通誘導(dǎo)系統(tǒng)被引入到城市的交通管理中,并且得到了快速的發(fā)展。其中車流量的短時(shí)預(yù)測(cè)與路徑誘導(dǎo)是交通誘導(dǎo)系統(tǒng)的關(guān)鍵技術(shù)。對(duì)未來某時(shí)刻的車流量進(jìn)行合理的預(yù)測(cè),并給出合理的誘導(dǎo)路徑,不僅能夠?yàn)榻煌ü芾聿块T提供決策依據(jù),而且能方便出行人出行,避免進(jìn)入擁堵路段,節(jié)約出行時(shí)間。由于城市路網(wǎng)交通狀態(tài)的時(shí)變性和復(fù)雜性,很難精確的描述其變化規(guī)律,因此研究實(shí)時(shí)準(zhǔn)確的車流量預(yù)測(cè)與路徑誘導(dǎo)算法具有十分重要的意義。本文通過對(duì)城市道路交通數(shù)據(jù)的分析,以城市道路網(wǎng)及交叉口為研究對(duì)象,對(duì)無檢測(cè)器交叉口的車流量預(yù)測(cè)、路網(wǎng)車流量預(yù)測(cè)以及路徑誘導(dǎo)算法進(jìn)行了研究,論文主要研究工作包括以下幾個(gè)方面:1.介紹了交通數(shù)據(jù)采集方法和交通數(shù)據(jù)的特性,分析了車流量預(yù)測(cè)的可行性,闡述了異常數(shù)據(jù)的識(shí)別與修復(fù)方法。采用時(shí)間序列分析法和Lyapunov指數(shù)分析并確定了車流量的可預(yù)測(cè)性,并使用歷史趨勢(shì)數(shù)據(jù)與實(shí)測(cè)數(shù)據(jù)的加權(quán)估計(jì)值對(duì)異常數(shù)據(jù)進(jìn)行了修復(fù)。2.針對(duì)城市路網(wǎng)中某些交叉口沒有檢測(cè)器或者檢測(cè)器故障的問題,在分析和研究幾種常用無檢測(cè)器交叉口車流量預(yù)測(cè)方法的基礎(chǔ)上,提出了一種基于模糊C均值聚類的無檢測(cè)器交叉口車流量預(yù)測(cè)方法。該方法通過模糊聚類將相關(guān)聯(lián)的交叉口聚為同一簇,然后使用多元線性回歸方法完成了對(duì)車流量的預(yù)測(cè)。實(shí)驗(yàn)結(jié)果驗(yàn)證了算法的有效性。3.通過對(duì)車流量預(yù)測(cè)模型的研究,給出了基于支持向量機(jī)回歸方法的短時(shí)車流量預(yù)測(cè)模型,并針對(duì)SVR的參數(shù)學(xué)習(xí)速度慢的問題,研究了遺傳算法的全局搜索特性,采用遺傳算法優(yōu)化SVR的參數(shù)選擇,最后實(shí)驗(yàn)驗(yàn)證了GA-SVR模型的合理性。4.研究了幾種傳統(tǒng)的求解最優(yōu)路徑算法的原理,分析了它們的優(yōu)缺點(diǎn),在此基礎(chǔ)上,引入了一種模擬進(jìn)化的蟻群算法,對(duì)交通最優(yōu)路徑進(jìn)行選擇。該算法的主要原理是蟻群依靠與路徑長(zhǎng)度有關(guān)的信息素來尋找最優(yōu)路徑。同時(shí)針對(duì)蟻群算法的缺點(diǎn)對(duì)其進(jìn)行改進(jìn),并用改進(jìn)的蟻群算法與遺傳算法進(jìn)行實(shí)驗(yàn)對(duì)比分析,驗(yàn)證了算法的有效性。5.利用GA-SVR預(yù)測(cè)模型與蟻群最短路徑誘導(dǎo)算法的研究結(jié)論,設(shè)計(jì)并完成了基于J2EE框架的交通誘導(dǎo)系統(tǒng)。
[Abstract]:In recent years, with the development of social economy, traffic congestion, traffic accidents and other traffic problems have become increasingly prominent. In order to deal with these problems, traffic guidance system has been introduced into urban traffic management and developed rapidly. Among them, the short-time prediction and route guidance of traffic flow are the key technologies of traffic guidance system. It can not only provide the decision basis for the traffic management department, but also facilitate the travel, avoid entering the congested section and save the travel time by reasonably forecasting the traffic flow at a certain time in the future. Because of the time variation and complexity of the traffic state of urban road network, it is difficult to describe its changing law accurately, so it is very important to study the real-time and accurate vehicle flow prediction and route guidance algorithm. Based on the analysis of urban road traffic data and taking the urban road network and intersection as the research object, this paper studies the vehicle flow prediction, road network traffic flow prediction and path guidance algorithm of the intersection without detector. The main research work includes the following aspects: 1. This paper introduces the methods of traffic data acquisition and the characteristics of traffic data, analyzes the feasibility of traffic flow prediction, and expounds the methods of identifying and repairing abnormal data. Time series analysis and Lyapunov index analysis are used to determine the predictability of traffic flow, and the weighted estimates of historical trend data and measured data are used to repair the abnormal data. 2. In view of the problem that some intersections in urban road network do not have detectors or fault detectors, based on the analysis and study of several commonly used traffic flow prediction methods of intersections without detectors, In this paper, a new method of traffic flow prediction at intersections without detector based on fuzzy C-means clustering is proposed. In this method, the associated intersections are clustered into the same cluster by fuzzy clustering, and the multivariate linear regression method is used to predict the traffic flow. The experimental results show that the algorithm is effective. Based on the research of traffic flow prediction model, a short-term traffic flow prediction model based on support vector machine regression method is presented. The global search characteristic of genetic algorithm is studied in view of the slow learning speed of parameters in SVR. Genetic algorithm is used to optimize the parameter selection of SVR. Finally, the rationality of GA-SVR model is verified by experiments. 4. 4. In this paper, the principles of several traditional optimal path algorithms are studied, and their advantages and disadvantages are analyzed. On this basis, a simulated evolutionary ant colony algorithm is introduced to select the optimal path of traffic. The main principle of the algorithm is that ant colony depends on the information related to path length to find the optimal path. At the same time, aiming at the shortcomings of ant colony algorithm, the improved ant colony algorithm and genetic algorithm are compared and analyzed, and the validity of the algorithm is verified. A traffic guidance system based on J2EE framework is designed and completed by using the GA-SVR prediction model and the conclusion of the ant colony shortest path guidance algorithm.
【學(xué)位授予單位】:長(zhǎng)安大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U495

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 邴其春;龔勃文;林賜云;楊兆升;曲鑫;;基于粒子群優(yōu)化投影尋蹤回歸模型的短時(shí)交通流預(yù)測(cè)[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年12期

2 陸化普;屈聞聰;孫智源;;基于S-G濾波的交通流故障數(shù)據(jù)識(shí)別與修復(fù)算法[J];土木工程學(xué)報(bào);2015年05期

3 錢偉;楊慧慧;孫玉娟;;相空間重構(gòu)的卡爾曼濾波交通流預(yù)測(cè)研究[J];計(jì)算機(jī)工程與應(yīng)用;2016年14期

4 袁亞博;劉羿;吳斌;;改進(jìn)蟻群算法求解最短路徑問題[J];計(jì)算機(jī)工程與應(yīng)用;2016年06期

5 楊兆升;邴其春;周熙陽;馬明輝;李曉文;;基于時(shí)間序列相似性搜索的交通流短時(shí)預(yù)測(cè)方法[J];交通信息與安全;2014年06期

6 唐毅;劉衛(wèi)寧;孫棣華;魏方強(qiáng);余楚中;;改進(jìn)時(shí)間序列模型在高速公路短時(shí)交通流量預(yù)測(cè)中的應(yīng)用[J];計(jì)算機(jī)應(yīng)用研究;2015年01期

7 馬健;張麗巖;李克平;孫劍;朱從坤;;交叉口瞬時(shí)交通流量預(yù)測(cè)的自適應(yīng)卡爾曼濾波模型[J];公路工程;2013年05期

8 屈莉;蘭時(shí)勇;張建偉;;基于浮動(dòng)車數(shù)據(jù)非參數(shù)回歸短時(shí)交通速度預(yù)測(cè)[J];計(jì)算機(jī)工程與設(shè)計(jì);2013年09期

9 傅貴;韓國(guó)強(qiáng);逯峰;許子鑫;;基于支持向量機(jī)回歸的短時(shí)交通流預(yù)測(cè)模型[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年09期

10 郭海鋒;方良君;俞立;;基于模糊卡爾曼濾波的短時(shí)交通流量預(yù)測(cè)方法[J];浙江工業(yè)大學(xué)學(xué)報(bào);2013年02期

,

本文編號(hào):2346172

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/daoluqiaoliang/2346172.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶a7401***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com