中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

當(dāng)前位置:主頁(yè) > 科技論文 > 材料論文 >

動(dòng)力學(xué)蒙特卡羅法模擬Si(100)基Ge納米島的生長(zhǎng)

發(fā)布時(shí)間:2018-08-11 16:53
【摘要】:半導(dǎo)體量子點(diǎn)在納米電子學(xué)、納米光子學(xué)和光電子學(xué)等領(lǐng)域具有相當(dāng)廣泛的應(yīng)用前景,基于量子點(diǎn)的固態(tài)量子器件在量子信息技術(shù)中將扮演重要角色。Ge/Si量子點(diǎn)由于具有與大規(guī)模集成電路相兼容的特點(diǎn),成為研究的熱點(diǎn)之一。為深入理解生長(zhǎng)因素及應(yīng)變對(duì)量子點(diǎn)形成的影響,動(dòng)力學(xué)蒙特卡羅方法(KMC)被廣泛應(yīng)用于量子點(diǎn)生長(zhǎng)的研究,并已取得了與實(shí)際情況相符的結(jié)果。 論文采用動(dòng)力學(xué)蒙特卡羅法結(jié)合MATLAB編程,模擬了Si(100)基底上生長(zhǎng)Ge量子點(diǎn)的初期二維Ge納米島成核過(guò)程。二維Ge納米島是量子點(diǎn)生長(zhǎng)的核心,它的狀態(tài)決定著三維島狀結(jié)構(gòu)量子點(diǎn)的成核位置、尺寸和形貌等結(jié)構(gòu)特性,而二維Ge納米島在實(shí)驗(yàn)上是難于觀(guān)察的,因此對(duì)二維Ge納米島的模擬研究有著重要意義。論文采用200×200的四方形格子,作為Ge量子點(diǎn)生長(zhǎng)的Si(100)基底,模擬過(guò)程主要考慮原子的沉積與擴(kuò)散兩個(gè)過(guò)程,而不考慮吸附原子的脫附過(guò)程。Ge原子在襯底擴(kuò)散采用周期性邊界條件。 首先系統(tǒng)研究了基本生長(zhǎng)參數(shù)對(duì)二維Ge納米島的成核位置、尺寸大小和均勻性、密度以及分布有序性等方面的影響。隨著生長(zhǎng)溫度的增加,原子擴(kuò)散能力增強(qiáng),二維Ge納米島的尺寸增大,密度減。欢SGe納米島在的退火過(guò)程中的穩(wěn)定性,隨著退火時(shí)間增加,吸附原子的平均擴(kuò)散幾率增加,它們會(huì)擴(kuò)散到勢(shì)能更低的地方聚集,二維Ge納米島尺寸增大,密度減小,觀(guān)察到Ostwald Ripening過(guò)程;隨著原子沉積量的增大,二維Ge納米島密度先增加后減少,尺寸不斷增加,量子點(diǎn)間的距離不斷減少,甚至出現(xiàn)島的連結(jié)現(xiàn)象。 其次研究了圖形襯底上二維Ge納米島隨生長(zhǎng)溫度和原子沉積的變化。溫度較低時(shí),沉積原子受圖形襯底的影響不大,隨著溫度增加,原子不斷在圖形襯底中形核成為二維島,但是在過(guò)高的溫度下,沉積原子的擴(kuò)散能力強(qiáng),會(huì)脫離圖形襯底的束縛,不利于形成分布有序的量子點(diǎn)陣列;同樣原子沉積量過(guò)小或過(guò)大都不利于有序量子點(diǎn)陣列的制備,過(guò)小使得量子點(diǎn)尺寸不均勻,過(guò)大會(huì)破壞有序性。 最后研究了生長(zhǎng)停頓和沉積原子能量對(duì)圖形襯底上量子點(diǎn)生長(zhǎng)初期的表面形態(tài)、島尺寸分布及空間分布等方面的影響。研究發(fā)現(xiàn),在所選取的停頓時(shí)間范圍內(nèi),時(shí)間越長(zhǎng),二維Ge納米島的有序性和均勻性越好:停頓次數(shù)的增加,會(huì)提高原子的擴(kuò)散能力,因此停頓次數(shù)適中時(shí)可以獲得有序均勻的二維Ge納米島陣列,最佳停頓次數(shù)為3次;沉積原子的剩余能量的增加,可使圖形襯底上二維Ge納米島的分布更加有序,尺寸也更均一,這是沉積原子得到適當(dāng)擴(kuò)散的結(jié)果。 通過(guò)對(duì)Si基底上二維Ge納米島的生長(zhǎng)模擬,分析了量子點(diǎn)生長(zhǎng)的物理機(jī)制,得到了生長(zhǎng)優(yōu)質(zhì)Ge量子點(diǎn)的工藝參數(shù)。為獲得空間有序的量子點(diǎn)陣、調(diào)整和優(yōu)化制備工藝提供了重要的理論依據(jù)。
[Abstract]:Semiconductor quantum dots have a wide range of applications in the fields of nano-electronics, nano-photonics and optoelectronics. Solid state quantum devices based on quantum dots will play an important role in quantum information technology. Ge- / Si quantum dots have become one of the hotspots for their compatibility with large scale integrated circuits (LSI). In order to understand the effect of growth factors and strain on the formation of quantum dots, the kinetic Monte Carlo method (KMC) has been widely used in the study of quantum dot growth. The nucleation process of GE quantum dots grown on Si (100) substrate was simulated by dynamic Monte Carlo method and MATLAB programming. Two-dimensional GE nanoscale island is the core of quantum dot growth. Its state determines the nucleation location, size and morphology of three-dimensional island structure quantum dot, while two-dimensional GE nanoscale island is difficult to observe experimentally. Therefore, it is of great significance to simulate the two-dimensional GE nanoscale island. In this paper, a square lattice of 200 脳 200 is used as the Si (100) substrate grown by GE quantum dots. The simulation process mainly considers the deposition and diffusion of atoms, but not the desorption process of adsorbed atoms. The periodic boundary conditions are adopted for the diffusion of GE atoms on the substrate. The effects of basic growth parameters on the nucleation location, size, uniformity, density and distribution order of two-dimensional GE nanoliths were studied systematically. With the increase of growth temperature, the diffusion ability of atoms increases, the size of two-dimensional GE nanoislands increases and the density decreases, and the stability of two-dimensional GE nanowires during annealing process increases with the increase of annealing time, and the average diffusion probability of adsorbed atoms increases with the increase of annealing time. The density of two-dimensional GE nanowires increases and decreases, and the Ostwald Ripening process is observed. With the increase of atomic deposition amount, the density of two-dimensional GE nanowires increases first and then decreases, and the size increases continuously. The distance between quantum dots is decreasing, and even the island is connected. Secondly, the change of two-dimensional GE nanoisland with growth temperature and atomic deposition on the graphic substrate is studied. When the temperature is low, the deposited atoms are not affected by the graphic substrate. With the increase of temperature, the atoms nucleate into two-dimensional islands in the graphic substrate, but the diffusion ability of the deposited atoms is strong at too high temperature. It is not conducive to the formation of an ordered quantum dot array, but the small or too large amount of atomic deposition is not conducive to the preparation of the ordered quantum dot array, so that the quantum dot size is not uniform and the order is destroyed by the excessive assembly. Finally, the effects of growth standstill and deposited atomic energy on the surface morphology, island size distribution and spatial distribution of QDs on graphical substrates are studied. The study found that the longer the pause time is, the better the order and uniformity of the two-dimensional GE nanoscale island is: the increase in the number of pauses increases the diffusion ability of atoms. Therefore, when the number of pauses is moderate, an ordered and uniform two-dimensional GE nanoisland array can be obtained, and the optimal number of pauses is 3 times, and the increase of residual energy of the deposited atoms can make the distribution of two-dimensional GE nanowires on the graphic substrate more orderly. The size is also more uniform, which is due to the proper diffusion of the deposited atoms. By simulating the growth of two-dimensional GE nanowires on Si substrate, the physical mechanism of quantum dot growth is analyzed, and the technological parameters for the growth of high quality GE quantum dots are obtained. It provides an important theoretical basis for obtaining ordered quantum lattice, adjusting and optimizing the preparation process.
【學(xué)位授予單位】:云南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TB383.1;O614.431

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 周志玉;周志文;李成;陳松巖;余金中;賴(lài)虹凱;;Ge/Si(100)量子點(diǎn)生長(zhǎng)與形態(tài)分布的研究[J];半導(dǎo)體光電;2008年02期

2 李昱峰,韓培德,陳振,黎大兵,王占國(guó);表面應(yīng)力誘導(dǎo)InGaN量子點(diǎn)的生長(zhǎng)及其性質(zhì)[J];半導(dǎo)體學(xué)報(bào);2003年01期

3 何為,郝智彪,羅毅;GaAs圖形襯底上InAs量子點(diǎn)生長(zhǎng)停頓的動(dòng)力學(xué)蒙特卡羅模擬[J];半導(dǎo)體學(xué)報(bào);2005年04期

4 柯煉,林峰,張勝坤,諶達(dá)宇,陸f ,王迅;導(dǎo)納譜研究鍺硅單量子阱的退火效應(yīng)[J];半導(dǎo)體學(xué)報(bào);1998年01期

5 王全彪;楊瑞東;楊宇;;外延生長(zhǎng)亞單層Si薄膜的動(dòng)力學(xué)蒙特卡羅模擬[J];材料導(dǎo)報(bào);2007年02期

6 孔令德;楊宇;;離子束濺射Si薄膜的縱向結(jié)晶性分析[J];功能材料;2006年08期

7 詹靜;陳曦;付非亞;楊康;胡義祥;褚海波;劉牛;江建軍;;量子點(diǎn)2D-3D完整生長(zhǎng)過(guò)程的Monte Carlo模擬[J];功能材料;2006年10期

8 宋超;孔令德;楊宇;;磁控濺射Ge/Si多層膜的發(fā)光特性研究[J];紅外技術(shù);2007年02期

9 張佩峰,鄭小平,賀德衍;薄膜生長(zhǎng)過(guò)程的Monte Carlo模擬[J];中國(guó)科學(xué)G輯:物理學(xué)、力學(xué)、天文學(xué);2003年04期

10 黃和鸞;現(xiàn)代外延生長(zhǎng)技術(shù)[J];遼寧大學(xué)學(xué)報(bào)(自然科學(xué)版);1994年01期

相關(guān)博士學(xué)位論文 前1條

1 馮昊;半導(dǎo)體納米材料的生長(zhǎng)仿真與物理特性研究[D];北京郵電大學(xué);2012年



本文編號(hào):2177631

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/kejilunwen/cailiaohuaxuelunwen/2177631.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)e2739***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com