雙吊點啟閉機液壓系統(tǒng)動態(tài)特性研究
[Abstract]:No matter it is a water conservancy project, a shipping lock, a power station, or a flood control station, it is necessary to use the gate, and the opening and closing of the gate must use a special mechanical device, the hoist. Compared with the large bulky hoisting hoist of the same capacity, the hydraulic hoist has much lighter weight, and the hydraulic structure is simple, which can save a lot of investment, especially when the number of orifices is more than that of the hydraulic hoist. Because of the smooth running, the system can realize stepless speed regulation conveniently, can realize the overload protection automatically, easy to connect with the computer, and realize the intelligent control, etc., the hydraulic hoist has shown its obvious superiority. However, as the main development direction of gate hoist, hydraulic hoist also faces many problems that need to be solved urgently, such as system dynamic performance is not ideal, system synchronization accuracy is not high, balance loop stability is poor, and so on. Therefore, starting from the problem, this paper adopts a new synchronous loop structure to complete the design of the control strategy and improve the dynamic performance of the system and the stability of the balance loop, which provides a reference for the future development of the hoist hydraulic system. Firstly, the working principle, research status and main problems of hydraulic system of hoist are briefly introduced, and the research background and significance of this paper are expounded. In chapter 2, the working principle of A11VO proportional variable pump and FD type unidirectional throttle balancing valve is described in detail. Based on the transfer function method, the mathematical models of the two key components are established, the block diagram is obtained, and the open loop transfer function is derived. The influence of the main structural parameters of the key components on the dynamic characteristics of the system is analyzed. According to the derived open loop gain, a feasible method to improve the stability of the system is proposed. In chapter 3, the hydraulic system simulation software AMESim is introduced briefly. The simulation models of A11VO proportional variable pump and FD type unidirectional throttle balancing valve are established by using HCD library. The accuracy of the model is verified, and the methods to suppress the pressure shock at the outlet of the proportional pump, to stabilize the pressure, to improve the stability of the system and to speed up the adjusting time of the balance loop system are obtained. In chapter 4, the function of PID control algorithm and the method of parameter tuning are introduced in detail. The AMESim simulation model of hoist hydraulic system is built. The PID controller is designed based on the system model. After the introduction of PID controller in the system, the simulation is focused on whether the proportional pump controlled synchronous cylinder can complete the more accurate displacement following under the step bias load and the step speed of 1 cylinder. Observe the control effect and dynamic performance of PID controller. In chapter 5, the working principle of feedforward compensation controller is introduced. In the case of load disturbance, the control effect of PID controller is not very ideal. The disturbance caused by load change is eliminated by feedforward compensation control strategy. The transfer function block diagram of synchronous loop module of hoist hydraulic system is established, feedforward compensation link is introduced into the system, and feedforward compensation controller is designed. The simulation results show that the performance of feedforward PID control is significantly improved than that of simple PID control under the same bias force interference.
【學位授予單位】:蘭州理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP273;TH137
【參考文獻】
相關(guān)期刊論文 前10條
1 張氫;孫峰;鄭敬峰;秦仙蓉;孫遠韜;;基于AMESim與ADAMS的輪式裝載機聯(lián)合仿真[J];機床與液壓;2016年05期
2 劉二東;鄭建明;黃建強;賀夢婕;;直驅(qū)泵控電液位置伺服系統(tǒng)模糊PID控制仿真與實驗研究[J];液壓與氣動;2015年05期
3 寧辰校;張戌社;羅占興;;液壓同步回路及液壓啟閉機同步控制研究[J];機床與液壓;2013年14期
4 楊國來;惠喜強;徐雙用;周淑琴;;基于AMESim的塔吊液壓頂升系統(tǒng)螺紋插裝式平衡閥動態(tài)特性分析[J];液壓與氣動;2013年03期
5 張小宇;;基于AMESim的液壓控制系統(tǒng)建模及仿真[J];煤礦機械;2011年02期
6 趙曉平;陳完成;;幾種液壓平衡回路的性能分析[J];石家莊職業(yè)技術(shù)學院學報;2009年06期
7 梁曉娟;;基于AMESim三位四通閥動態(tài)仿真研究[J];煤礦機電;2009年05期
8 江曉明;;液壓沖擊的物理本質(zhì)、產(chǎn)生原因及其改善措施[J];科技創(chuàng)新導報;2009年10期
9 王炎;胡軍科;楊波;;負載敏感泵的動態(tài)特性分析與仿真研究[J];現(xiàn)代制造工程;2008年12期
10 張立強,楊國來,盧X;基于自適應(yīng)模糊PID的徑向柱塞變量泵電液伺服控制[J];蘭州理工大學學報;2005年04期
相關(guān)博士學位論文 前1條
1 周育才;800MN巨型液壓機同步系統(tǒng)精良控制技術(shù)研究[D];中南大學;2012年
相關(guān)碩士學位論文 前10條
1 鄧龍;螺紋插裝式平衡閥在平衡回路中穩(wěn)定性研究[D];蘭州理工大學;2016年
2 陳明明;超越負載工況下平衡閥穩(wěn)定性研究[D];吉林大學;2015年
3 寧賽;電液比例泵控馬達速度控制策略研究[D];北京理工大學;2015年
4 季清華;掘進機用插裝式平衡閥動態(tài)仿真[D];太原理工大學;2013年
5 惠喜強;螺紋插裝式平衡閥動態(tài)特性和內(nèi)流場的研究[D];蘭州理工大學;2013年
6 李坤;新型負載保持閥性能研究與仿真分析[D];太原科技大學;2012年
7 梁承杰;工程臂架液壓驅(qū)動同步系統(tǒng)設(shè)計與控制策略[D];湖南師范大學;2011年
8 梁宏喜;液壓平衡閥動態(tài)特性的數(shù)值解析[D];蘭州理工大學;2011年
9 詹磊;新型雙吊點液壓啟閉機的設(shè)計與研究[D];昆明理工大學;2011年
10 張恒;負載敏感平衡閥的可視化分析及結(jié)構(gòu)優(yōu)化[D];太原理工大學;2010年
,本文編號:2378716
本文鏈接:http://www.lk138.cn/guanlilunwen/gongchengguanli/2378716.html