冷壓制備工業(yè)硅生產(chǎn)用碳質(zhì)還原劑球團(tuán)及成型機(jī)理研究
[Abstract]:Due to its low ash content and high porosity, charcoal is the best carbonaceous reducing agent in industrial silicon production. With the increasing shortage of forest resources and the improvement of human environmental awareness, the price of charcoal increased even in the charcoal plant, which has a serious effect on the industrial silicon production. Therefore, it is urgent to find a carbonaceous reducing agent to replace the charcoal. The carbon reducing agent for production has the following requirements: chemical composition requires high fixed carbon, low moisture, moderate volatilization, low ash content (ash content 5%, Fe content 0.2%), a certain mechanical strength, suitable size composition, high resistivity and chemical reaction ability. This paper is provided in the coal and production of the surrounding area of Yunnan because of the high resistivity and chemical reaction ability. In addition to chemical composition, other properties are reflected by the compressive strength of the raw ball, the compressive strength of the dry ball, the crushing rate, the heat strength and the porosity. The ash content of the bituminous coal is 16.09%, which needs to be pretreated. The chemical composition meets the requirements of industrial silicon production without preprocessing. In this paper, the pretreatment of bituminous coal was first studied, and the raw materials of carbon reduction agent pellets used in industrial silicon production were selected. The pretreatment process of bituminous coal was divided into two stages of flotation and acid leaching. The optimum flotation process parameters were as follows: the three coarse two finish closed circuit experiment process was selected. The amount of the defoaming agent is 120g/t, the amount of the collector diesel oil is 600g/t, the amount of the inhibitor glass is 2300g/t. after flotation, the ash content is 4.68%, the content of the Fe element is 0.32%. It can not meet the requirement of the chemical composition of the carbon reducing agent in the industrial silicon production. It needs further deashing and removing iron. The process of acid soot deashing and removing iron is 4mol/L hydrochloric acid. The leaching time is 60 C, the leaching time is 60min, the liquid and solid ratio is 5:1, the waste acid is recycled 3 times. The ash content of the refined coal after acid leaching is 3.89%, the content of Fe is 0.17%, which meets the requirement of the chemical composition of the carbonaceous reducing agent in the industrial silicon production. The powder is used as the raw material for the production of carbon reducing agent pellets for industrial silicon. Secondly, the cold press molding process is studied with R as a binder. The optimum process parameters are as follows: the molding pressure is 25MPa, the concentration of NaOH solution is 4.8mo1/L, the content is 8%, the micro silicon powder is added to 8%, the washed coal is coke: charcoal is 9.3:8.8:1 (quality certain), The maximum grain size range of the formed particles is 3.3mm to 4.75mm, and the proportion is 60%. Under the R binder content 3.5%., the pellet has the best performance, the ball compression strength is 698.0N, the dry ball compressive strength is 6985.0N, the crushing rate is 93.68%, the heat strength is 55.25%, and the porosity of 14.69%. production shows that this pellet can be used in industrial silicon. Production, but the condition of the furnace is poor, the performance of pellet needs to be improved. This paper takes this ball as a reference. Again, the effects of coal tar pitch, NaHA (humic acid sodium), sodium lignosulfonate, water glass and starch binder (starch A, starch B, starch C and starch D) on pellet performance are studied. The performance of pellets prepared by starch D is the best and comprehensive examination The content is 1.96%. At this time, the compressive strength of the ball is 873.2N, the compressive strength of the dry ball is 8091.4N, the crushing rate is 99.21%, the heat strength is 94.44%, the porosity is above 5.86%., and the other properties except the porosity are all satisfied with the production requirements. Therefore, on this basis, the hollow microspheres, calcium oxide and biological materials of non biomass pore making agents are studied on this basis. The effect of the porous rice husk, corn straw, wheat straw, rice straw and wood chips on the pellet performance was found. The results showed that the Pelletizing Properties of the pellets prepared by other substances except the hollow microspheres could not meet the industrial silicon production requirements. When the water rice straw was selected as the pore making agent, the optimum content was 2.5%. When the maximum particle size is 4.75mm and the distribution modulus is 0.5, the ball has the best performance. Under this condition, the compressive strength of the ball is 4700.2N, the compressive strength of the dry ball is 9536.1N, the crushing rate is 99.07%, the heat strength is 96.21%, the porosity is 30.78%, which can meet the requirements of the industrial silicon production. In addition, the water content, wetting medium and bond during the cold pressing process are studied. The influence mechanism of agent, pore forming agent, molding pressure and material size composition on pellet properties is obtained. The following conclusions are obtained: in the process of cold pressing, when the NaOH solution is the wetting medium, the new chemical bonds produced by the reaction of NaOH and starch D increase the binding capacity of the particles. The binding force between the particles and the binder is the mechanical binding force and the physical and chemical binding force. As a result of the comprehensive effect, the effect of mechanical binding force is greater than that of physical chemical binding force. The main reason for the increase of the porosity of rice straw in the pellet is due to its small density and the characteristics of plastic deformation after the external force is disappearing. When the particle size composition of the raw material is in line with the GGS particle size characteristic equation, the best performance of the pellets is the best. The pellets prepared under the best technological parameters are put into the 25.5MVA semi closed rotary mine hot stove. The analysis of industrial production data shows that the pellet can meet the requirements of industrial silicon production, and the optimum replacement amount is 80%..
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN304.12
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張曉峰,王永玲;提高球團(tuán)大水梁自動(dòng)上水系統(tǒng)可靠性[J];儀器儀表標(biāo)準(zhǔn)化與計(jì)量;2001年03期
2 殷玉善;李寶實(shí);高燕;;通信技術(shù)在萊鋼120萬噸球團(tuán)的應(yīng)用[J];信息技術(shù)與信息化;2013年06期
3 王創(chuàng)新;謝又成;;基于多傳感器信息融合的球團(tuán)密度檢測(cè)系統(tǒng)[J];微計(jì)算機(jī)信息;2006年35期
4 趙峰;邊洪波;趙永;;歐陸590+在球團(tuán)回轉(zhuǎn)窯上的應(yīng)用[J];科技信息;2013年25期
5 茍衛(wèi)東;鞍鋼球團(tuán)自動(dòng)控制系統(tǒng)的改造[J];燒結(jié)球團(tuán);2001年06期
6 吳琳;;馬鋼150萬t球團(tuán)鏈蓖機(jī)回轉(zhuǎn)窯控制系統(tǒng)[J];安徽冶金;2009年01期
7 高緒松;;馬鋼150萬t球團(tuán)工程自動(dòng)化控制系統(tǒng)[J];中國設(shè)備工程;2009年10期
8 劉勇;虎恩典;胡時(shí)高;趙霞;;PLC在金屬鎂球團(tuán)壓制控制系統(tǒng)中的應(yīng)用[J];儀表技術(shù)與傳感器;2013年12期
9 韓亞玲;;宣鋼球團(tuán)回轉(zhuǎn)窯自動(dòng)控制系統(tǒng)的功能優(yōu)化[J];數(shù)字技術(shù)與應(yīng)用;2013年09期
10 謝又成;章兢;任萍;樊紹勝;;基于模糊建模的球團(tuán)密度在線測(cè)量[J];測(cè)試技術(shù)學(xué)報(bào);2006年01期
相關(guān)會(huì)議論文 前10條
1 胡俊鴿;周文濤;趙小燕;;熱壓含碳球團(tuán)技術(shù)發(fā)展及其應(yīng)用前景分析[A];2010年全國煉鐵生產(chǎn)技術(shù)會(huì)議暨煉鐵學(xué)術(shù)年會(huì)文集(上)[C];2009年
2 段祥光;張文軍;崔玉元;呂志義;段先卯;;含氟球團(tuán)及無氟球團(tuán)焙燒性能研究[A];2001中國鋼鐵年會(huì)論文集(上卷)[C];2001年
3 代書華;劉百臣;儲(chǔ)滿生;沈峰滿;;含碳球團(tuán)新技術(shù)的應(yīng)用[A];2006年中國非高爐煉鐵會(huì)議論文集[C];2006年
4 梁儒全;赫冀成;;球團(tuán)豎爐內(nèi)球團(tuán)運(yùn)動(dòng)行為的實(shí)驗(yàn)研究[A];中國化學(xué)會(huì)、中國力學(xué)學(xué)會(huì)第九屆全國流變學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2008年
5 朱炳秀;魏國;姜鑫;沈峰滿;;褐鐵礦含碳球團(tuán)低溫熔分實(shí)驗(yàn)研究[A];2012年全國煉鐵生產(chǎn)技術(shù)會(huì)議暨煉鐵學(xué)術(shù)年會(huì)文集(上)[C];2012年
6 肖廣信;王磊;張琨;李會(huì)敏;;鏈篦機(jī)上球團(tuán)干燥過程的數(shù)學(xué)模型[A];2006全國能源與熱工學(xué)術(shù)年會(huì)論文集[C];2006年
7 儲(chǔ)滿生;王兆才;柳政根;;物性因素對(duì)熱壓含碳球團(tuán)還原性能的影響[A];第七屆(2009)中國鋼鐵年會(huì)論文集(上)[C];2009年
8 曹玉紅;秦俊杰;劉鳳榮;羅曉玲;;熔片法快速分析鈦球團(tuán)中的二氧化鈦、全鐵[A];山東省金屬學(xué)會(huì)理化檢驗(yàn)學(xué)術(shù)委員會(huì)理化檢驗(yàn)學(xué)術(shù)交流會(huì)論文集[C];2009年
9 白銘;;高碳冷壓球團(tuán)研究[A];1997中國鋼鐵年會(huì)論文集(上)[C];1997年
10 孟繁明;;含碳球團(tuán)還原·滲碳·熔融機(jī)理的研究[A];2006年中國非高爐煉鐵會(huì)議論文集[C];2006年
相關(guān)重要報(bào)紙文章 前10條
1 記者 任國戰(zhàn);安鋼120萬噸球團(tuán)項(xiàng)目投產(chǎn)[N];河南日?qǐng)?bào);2011年
2 劉雨帆;鄂州500萬噸球團(tuán)工程設(shè)計(jì)通過評(píng)審[N];中國礦業(yè)報(bào);2004年
3 通訊員 楊石林 沈蓉 記者 陳黎明;沙鋼240萬噸球團(tuán)項(xiàng)目投產(chǎn)[N];中國冶金報(bào);2006年
4 李文;康利斯與謝韋爾資源公司簽署長期球團(tuán)交易協(xié)議[N];中國冶金報(bào);2007年
5 沈蓉;沙鋼240萬噸球團(tuán)項(xiàng)目竣工投產(chǎn)[N];世界金屬導(dǎo)報(bào);2006年
6 周雅麗;宣鋼煉鐵廠球團(tuán)水分測(cè)量系統(tǒng)投入使用[N];世界金屬導(dǎo)報(bào);2007年
7 鄭巖;中冶北方簽訂寶鋼湛江500萬噸/年球團(tuán)總承包合同[N];中國冶金報(bào);2007年
8 徐萌 趙志星 趙民革 張衛(wèi)東;以含碳球團(tuán)為原料的煉鐵工藝[N];世界金屬導(dǎo)報(bào);2009年
9 陳曉亮;伊春西林區(qū)80萬噸球團(tuán)二期工程開工建設(shè)[N];黑龍江經(jīng)濟(jì)報(bào);2010年
10 記者 趙海軍;大中礦業(yè)120萬噸球團(tuán)建設(shè)項(xiàng)目即將投運(yùn)[N];巴彥淖爾日?qǐng)?bào)(漢);2010年
相關(guān)博士學(xué)位論文 前10條
1 黃艷芳;復(fù)合粘結(jié)劑鐵礦球團(tuán)氧化焙燒與還原行為研究[D];中南大學(xué);2012年
2 師學(xué)峰;高磷鮞狀赤鐵礦含碳球團(tuán)氣基豎爐直接還原基礎(chǔ)研究[D];鋼鐵研究總院;2015年
3 楊妮;冷壓制備工業(yè)硅生產(chǎn)用碳質(zhì)還原劑球團(tuán)及成型機(jī)理研究[D];昆明理工大學(xué);2016年
4 李建;鐵精礦復(fù)合粘結(jié)劑球團(tuán)直接還原法工藝及機(jī)理研究[D];中南大學(xué);2007年
5 朱炳秀;低配碳球團(tuán)低溫制備粒鐵工藝試驗(yàn)研究[D];東北大學(xué);2012年
6 滿毅;氣—固基協(xié)同作用下含碳球團(tuán)直接還原特性研究[D];北京科技大學(xué);2015年
7 劉穎;轉(zhuǎn)底爐內(nèi)冶金粉塵含碳球團(tuán)直接還原過程數(shù)學(xué)模型研究[D];北京科技大學(xué);2015年
8 李彩霞;膨潤土基冶金球團(tuán)粘結(jié)劑研制及構(gòu)效關(guān)系研究[D];遼寧工程技術(shù)大學(xué);2011年
9 余文;高磷鮞狀赤鐵礦含碳球團(tuán)制備及直接還原—磁選研究[D];北京科技大學(xué);2015年
10 馬躍;高速車輪鋼韌化機(jī)理及工藝優(yōu)化研究[D];鋼鐵研究總院;2012年
相關(guān)碩士學(xué)位論文 前10條
1 張萬慶;Fe-C納米結(jié)構(gòu)球團(tuán)的制備及研究[D];河北聯(lián)合大學(xué);2014年
2 張銳;基于新型硅熱法煉鎂預(yù)制球團(tuán)的制備研究[D];東北大學(xué);2014年
3 居天華;提高轉(zhuǎn)爐除塵灰冷壓球團(tuán)強(qiáng)度的粘結(jié)劑研究[D];東北大學(xué);2014年
4 郝月君;含碳納米管球團(tuán)的制備與性能研究[D];華北理工大學(xué);2016年
5 傅小華;脈石成分對(duì)含碳球團(tuán)還原的影響研究[D];安徽工業(yè)大學(xué);2016年
6 吳乾江;含碳球團(tuán)的析出特性及其對(duì)轉(zhuǎn)底爐內(nèi)溫度場(chǎng)和流場(chǎng)影響研究[D];重慶大學(xué);2016年
7 宋健;還原劑反應(yīng)性對(duì)含碳球團(tuán)還原過程的影響[D];遼寧科技大學(xué);2012年
8 李宏;鋇鈦磁鐵礦內(nèi)配碳球團(tuán)壓力成型工藝及其質(zhì)量研究[D];西華大學(xué);2013年
9 戈捷;含硫砷金精礦雙層球團(tuán)無污染焙燒的基礎(chǔ)研究[D];中南大學(xué);2012年
10 秦長澤;球團(tuán)顆粒粒度檢測(cè)系統(tǒng)的研究[D];武漢科技大學(xué);2015年
,本文編號(hào):2146594
本文鏈接:http://www.lk138.cn/shoufeilunwen/xxkjbs/2146594.html