国产伦乱,一曲二曲欧美日韩,AV在线不卡免费在线不卡免费,搞91AV视频

當(dāng)前位置:主頁(yè) > 碩博論文 > 信息類碩士論文 >

基于生成對(duì)抗網(wǎng)絡(luò)和膠囊網(wǎng)絡(luò)的SAR目標(biāo)分類

發(fā)布時(shí)間:2024-07-04 19:15
  合成孔徑雷達(dá)(Synthetic Aperture Radar,SAR)是一種能夠全天時(shí)、全天候和遠(yuǎn)距離對(duì)目標(biāo)進(jìn)行主動(dòng)觀測(cè)的系統(tǒng),已廣泛應(yīng)用于軍事和民用領(lǐng)域。SAR自動(dòng)目標(biāo)識(shí)別(SAR Automatic Target Recognition,SAR-ATR)是SAR領(lǐng)域的研究熱點(diǎn)之一,它能夠自動(dòng)、快速、準(zhǔn)確地識(shí)別目標(biāo)。近年來(lái),深度學(xué)習(xí)理論已廣泛應(yīng)用于SAR-ATR,并取得了顯著的成績(jī)。卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種典型的深度學(xué)習(xí)網(wǎng)絡(luò),它能通過(guò)提取目標(biāo)不同層次特征,獲得較高的目標(biāo)識(shí)別率。然而,基于卷積神經(jīng)網(wǎng)絡(luò)的SAR目標(biāo)分類需要大量的訓(xùn)練樣本,否則容易出現(xiàn)過(guò)擬合問題。此外,CNN也無(wú)法解決因目標(biāo)姿態(tài)發(fā)生變化(如平移、旋轉(zhuǎn)、縮放等)而帶來(lái)的錯(cuò)誤分類問題。為了解決以這些問題,本文分別結(jié)合生成對(duì)抗網(wǎng)絡(luò)和膠囊網(wǎng)絡(luò)的優(yōu)勢(shì),提出了兩種SAR目標(biāo)分類方法,具體內(nèi)容如下:1)提出了一種基于改進(jìn)的卷積神經(jīng)網(wǎng)絡(luò)(Improved Convolutional Neural Network,ICNN)和改進(jìn)的生成對(duì)抗網(wǎng)絡(luò)(Improved Generat...

【文章頁(yè)數(shù)】:58 頁(yè)

【學(xué)位級(jí)別】:碩士

【文章目錄】:
摘要
ABSTRACT
第一章 緒論
    1.1 論文研究背景及意義
    1.2 深度學(xué)習(xí)研究現(xiàn)狀
    1.3 SAR目標(biāo)分類研究現(xiàn)狀
    1.4 論文主要工作及結(jié)構(gòu)安排
第二章 深度學(xué)習(xí)理論
    2.1 深度學(xué)習(xí)理論概述
    2.2 神經(jīng)網(wǎng)絡(luò)
        2.2.1 信息前向傳播
        2.2.2 誤差反向傳播
    2.3 卷積神經(jīng)網(wǎng)絡(luò)
        2.3.1 卷積層
        2.3.2 池化層
        2.3.3 激活函數(shù)
        2.3.4 全連接層和輸出層
    2.4 生成對(duì)抗網(wǎng)絡(luò)
    2.5 膠囊網(wǎng)絡(luò)
    2.6 本章小結(jié)
第三章 基于ICNN和IGAN的SAR目標(biāo)分類方法
    3.1 基于ICNN和IGAN的SAR目標(biāo)分類方法模型
        3.1.1 ICNN
        3.1.2 IGAN
    3.2 ICNN和IGAN的結(jié)構(gòu)參數(shù)
        3.2.1 ICNN結(jié)構(gòu)參數(shù)
        3.2.2 IGAN結(jié)構(gòu)參數(shù)
    3.3 實(shí)驗(yàn)結(jié)果
    3.4 本章小結(jié)
第四章 基于改進(jìn)的膠囊網(wǎng)絡(luò)的SAR目標(biāo)分類方法
    4.1 改進(jìn)的膠囊網(wǎng)絡(luò)模型
        4.1.1 注意力模塊
        4.1.2 改進(jìn)的膠囊網(wǎng)絡(luò)參數(shù)
    4.2 實(shí)驗(yàn)結(jié)果及分析
        4.2.1 采用全部的數(shù)據(jù)集
        4.2.2 減少訓(xùn)練樣本數(shù)
        4.2.3 對(duì)測(cè)試樣本進(jìn)行姿態(tài)變換
    4.3 本章小結(jié)
第五章 總結(jié)與展望
    5.1 全文總結(jié)
    5.2 工作展望
參考文獻(xiàn)
致謝
攻讀學(xué)位期間的研究成果



本文編號(hào):4000468

資料下載
論文發(fā)表

本文鏈接:http://lk138.cn/shoufeilunwen/xixikjs/4000468.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶254dc***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
伊人欧美国产777一区二区91| 久久日韩电影一区二区| 偷拍自亚洲| 手机看片日韩激情| 欧美日韩综合熟女| 欧美精品一区二区久久丰满湿润| 国产日韩欧美图片国产日韩欧| 国精一级A片网站| 亚洲男人的天堂在线看| 欧国产精品九九99久久在免费| 日韩激情欧美精品| 激情综亚州| 大肉棒子一进一出子| 日韩国产欧美一区| 国产91啪啪啪啪啪啪啪啪啪| Aⅴ高清无码不卡免费| 2020欧美性爱大全| 日韩免费中文字幕不卡区| 国产日韩一区二区三区在线观看| 亚洲一线欧美日本久久二线| 国产精品久久久久久久久无码专区 | 亚洲中文字幕二区| 精品无码国产一区二区三区5安| 31亚洲国产精品| 屈辱有码一区二区| 欧美、日本一区二区| 亚洲一区性色| 在线观看不卡网站Av| 99r在线视频| 久久久黄色av| 日本欧美国产一级片免费| 干一干射一射爽一爽| 精品人妻Av一区二区三区四区| 亚洲第一区欧美日韩久久久| 久久久久久久日本三级久久| 人人干人人爽人人喊| 久久精品国产对白国产AV老师| 熟女狂操一区二区三区| 久久网综合网| 国产AV女人久久精品蜜臀| 刺激的网站你懂得在线观看视频|