中国韩国日本在线观看免费,A级尤物一区,日韩精品一二三区无码,欧美日韩少妇色

海面目標(biāo)的稀疏檢測(cè)方法研究

發(fā)布時(shí)間:2018-12-16 11:50
【摘要】:海面目標(biāo)檢測(cè)因受到海雜波的影響,傳統(tǒng)目標(biāo)檢測(cè)方法易產(chǎn)生高虛警問(wèn)題,如何有效抑制非平穩(wěn)的、相關(guān)性強(qiáng)的海雜波,提高海面目標(biāo)的檢測(cè)能力,一直是雷達(dá)檢測(cè)領(lǐng)域的難點(diǎn)問(wèn)題。在高頻近似情況下,海面目標(biāo)(例如艦船等)的后向散射常呈現(xiàn)出多散射中心的特點(diǎn),散射中心數(shù)量一般遠(yuǎn)小于觀測(cè)區(qū)域的可分辨單元數(shù)量,基本符合壓縮感知(CS,ComPressive Sensing)處理方法對(duì)目標(biāo)散射稀疏先驗(yàn)的要求。因此,本文利用壓縮感知技術(shù)重點(diǎn)開(kāi)展了以下研究工作:1.在高斯噪聲背景下,研究了迭代軟閾值(IST,Iterative Soft Thresholding)算法的點(diǎn)目標(biāo)重構(gòu)能力和輸出噪聲特性。重點(diǎn)討論了基于IST的兩種固定門(mén)限檢測(cè)器,推導(dǎo)了相應(yīng)的檢測(cè)概率和虛警概率的解析表達(dá)式,仿真分析表明,欠采樣下的IST固定門(mén)限檢測(cè)器性能優(yōu)于匹配濾波最優(yōu)檢測(cè)器。另外,給出了基于IST的恒虛警(CFAR)檢測(cè)器架構(gòu)及其性能分析。2.在海雜波背景和點(diǎn)目標(biāo)檢測(cè)條件下,建立了海雜波復(fù)合K分布模型,研究了 OMP(Orthogonal Matching Pursuit)和 FOCUSS(Focal Undetermined System Solver)算法對(duì)中低海情海雜波的抑制性能,相比經(jīng)典的白化濾波方法,它們具有更好的海雜波濾除能力。針對(duì)海雜波的復(fù)雜動(dòng)力學(xué)行為,初步探索了海雜波抑制的深度學(xué)習(xí)(DeeP Learning)方法,利用卷積自編碼器(CAE,Convolutional Auto-Encode)對(duì)回波譜圖中的海雜波和目標(biāo)進(jìn)行了有效分離,初步驗(yàn)證了方法的可行性。3.在海雜波背景下,研究了擴(kuò)展目標(biāo)的稀疏檢測(cè)方法。擴(kuò)展目標(biāo)的多散射中心通常呈現(xiàn)區(qū)域連續(xù)分布的特點(diǎn),這里利用目標(biāo)連續(xù)區(qū)域邊界的稀疏性和非零的目標(biāo)散射點(diǎn)與周?chē)⑸潼c(diǎn)之間的連續(xù)依賴關(guān)系,提出了結(jié)合總體變分(Total Variation,TV)正則化約束的SF-LASSO算法,仿真結(jié)果表明SF-LASSO算法能較準(zhǔn)確反演目標(biāo)位置和基本輪廓。
[Abstract]:Because the sea surface target detection is affected by sea clutter, the traditional target detection method is easy to produce high false alarm problem. How to effectively suppress the non-stationary and strongly correlated sea clutter and improve the detection ability of the sea surface target, It has always been a difficult problem in the field of radar detection. In the case of high frequency approximation, the backscattering of sea surface targets (such as ships, etc.) often presents the characteristics of multiple scattering centers. The number of scattering centers is generally much smaller than the number of discernible units in the observed region, which basically accords with compression sensing (CS,). A priori requirement for sparse target scattering by ComPressive Sensing) processing method. Therefore, this paper focuses on the following research work using compressed sensing technology: 1. In the background of Gao Si noise, the point target reconstruction ability and output noise characteristics of iterative soft threshold (IST,Iterative Soft Thresholding) algorithm are studied. In this paper, two kinds of fixed threshold detectors based on IST are discussed, and the analytical expressions of detection probability and false alarm probability are derived. The simulation results show that the performance of IST fixed threshold detector under under-sampling is better than that of matched filter optimal detector. In addition, the architecture and performance analysis of CFAR (CFAR) detector based on IST are given. 2. Under the condition of sea clutter background and point target detection, the composite K distribution model of sea clutter is established, and the suppression performance of OMP (Orthogonal Matching Pursuit) and FOCUSS (Focal Undetermined System Solver) algorithms to sea clutter in middle and low sea conditions is studied, compared with the classical whitening filtering method. They have better filtering capability of sea clutter. Aiming at the complex dynamic behavior of sea clutter, the depth learning (DeeP Learning) method for sea clutter suppression is preliminarily explored. The sea clutter and target in echo spectrum are effectively separated by convolution self-encoder (CAE,Convolutional Auto-Encode). The feasibility of the method is preliminarily verified. 3. In the background of sea clutter, the sparse detection method of extended targets is studied. The multi-scattering centers of extended targets usually show the characteristics of continuous regional distribution. In this paper, the sparsity of the boundary of the continuous region of the target and the continuous dependence between the non-zero scattering points and the surrounding scattering points are used. A new SF-LASSO algorithm with global variation (Total Variation,TV) regularization constraints is proposed. The simulation results show that the SF-LASSO algorithm can accurately retrieve the target position and the basic contour.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TN957.51

【相似文獻(xiàn)】

相關(guān)期刊論文 前6條

1 寧蘭忠;;海面目標(biāo)測(cè)控系統(tǒng)的一種設(shè)計(jì)方法[J];無(wú)線電工程;1987年02期

2 陳開(kāi)元;宋元;;海面目標(biāo)威脅評(píng)估指標(biāo)體系分析[J];艦船電子工程;2009年06期

3 楊士英;;對(duì)海面遠(yuǎn)距離目標(biāo)的高精度定位方法研究[J];電子信息對(duì)抗技術(shù);2010年06期

4 楊寶成,沈國(guó)土,洪鎮(zhèn)青,高蘭香,毛宏霞,朱文勇,高景;海面目標(biāo)熱像理論模擬中的幾何構(gòu)型問(wèn)題[J];華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年01期

5 陳小龍;關(guān)鍵;何友;;微多普勒理論在海面目標(biāo)檢測(cè)中的應(yīng)用及展望[J];雷達(dá)學(xué)報(bào);2013年01期

6 孫春韋,,袁潭林,詹明陽(yáng),金亦華;2D搜索雷達(dá)對(duì)海面目標(biāo)的群跟蹤[J];雷達(dá)與對(duì)抗;1995年04期

相關(guān)重要報(bào)紙文章 前1條

1 本報(bào)特約撰稿 王群;讓F—35們無(wú)處遁形的特殊雷達(dá)[N];中國(guó)國(guó)防報(bào);2014年

相關(guān)碩士學(xué)位論文 前3條

1 趙洪宇;機(jī)載雷達(dá)對(duì)海目標(biāo)數(shù)據(jù)處理方法研究[D];電子科技大學(xué);2014年

2 張琦;海面目標(biāo)的稀疏檢測(cè)方法研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年

3 馮艷華;海面目標(biāo)紅外輻射特性研究[D];西安電子科技大學(xué);2009年



本文編號(hào):2382284

資料下載
論文發(fā)表

本文鏈接:http://www.lk138.cn/shoufeilunwen/xixikjs/2382284.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fa29e***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com