基于統(tǒng)計(jì)特征的維吾爾文離線手寫(xiě)簽名鑒別技術(shù)研究
[Abstract]:Handwritten signature authentication, as a biometric authentication technology, has been widely accepted and applied in finance, law, commerce and so on. At present, handwritten signature authentication techniques based on English, Arabic and Chinese have obtained more mature research results, while Uighur based handwritten signature verification is still in an initial stage in this field. Therefore, the further study of Uygur handwritten signature authentication is of great practical application and practical value in making up for and perfecting the off-line signature authentication system of minority nationalities in China. This paper mainly focuses on Uygur handwritten signature authentication technology in off-line state. The research work includes three parts: signature sample collection and pretreatment, feature extraction, classification and authentication. In the preprocessing stage, the noise and interference signals on the signature image are overcome by grayscale, binarization, smooth denoising, normalization and so on. In the phase of feature extraction, according to the writing style and characteristics of Uygur handwritten signature, four different scans are performed on each signature sample image to propose a 16-dimensional directional feature. Secondly, based on the feature extraction method of directional features, an improved 48-dimensional directional feature is proposed based on the statistic of the black pixel information of signature handwriting in six different directions. Finally, based on the energy, entropy, moment of inertia and local stationarity of the gray level co-occurrence matrix, the feature weighted fusion method is used to extract the fusion features and determine the optimal weights suitable for Uygur handwritten signature authentication. In the phase of classification and authentication of signature images, three distance classifiers, Euclidean distance, chi-square distance and Manhattan distance, are used for the two directional features proposed in this paper. The weighted fusion feature of gray level co-occurrence matrix is verified by BP neural network. In the experiment, 900 handwritten signature samples of 15 people (20 original signature samples / 20 simple imitation pseudo-signature samples per person / 20 skilled imitation pseudo-signature samples / each) were selected from the Uygur handwritten signature sample database. Finally, the highest signature authentication rate obtained by the three signature authentication methods used in this paper is 88.61% and 91.78% respectively.
【學(xué)位授予單位】:新疆大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉晟橋;牛連強(qiáng);馮庸;;一種改進(jìn)的退化文本圖像二值化方法[J];智能計(jì)算機(jī)與應(yīng)用;2016年04期
2 庫(kù)爾班·吾布力;熱依買(mǎi)·阿不力克木;努爾畢亞·亞地卡爾;阿力木江·艾沙;吐?tīng)柛ひ啦祭?;基于密度特征的維吾爾文離線簽名識(shí)別[J];計(jì)算機(jī)工程與設(shè)計(jì);2016年08期
3 曾凡鋒;王戰(zhàn)東;郭正東;;非均勻光照文檔圖像快速二值化方法[J];計(jì)算機(jī)應(yīng)用與軟件;2015年11期
4 牧其爾;包玉海;;基于灰度—梯度共生矩陣的遙感影像紋理信息提取方法研究[J];內(nèi)蒙古科技與經(jīng)濟(jì);2015年05期
5 劉天時(shí);肖敏敏;李湘眷;;融合方向測(cè)度和灰度共生矩陣的紋理特征提取算法研究[J];科學(xué)技術(shù)與工程;2014年32期
6 任國(guó)貞;江濤;;基于灰度共生矩陣的紋理提取方法研究[J];計(jì)算機(jī)應(yīng)用與軟件;2014年11期
7 唐有寶;卜巍;張恩澤;鄔向前;;基于ASIFT的離線簽名認(rèn)證方法[J];北京航空航天大學(xué)學(xué)報(bào);2015年01期
8 古麗熱娜·阿布里孜;庫(kù)爾班·吾布力;卡米力·木依丁;艾斯卡爾·艾木都拉;;基于多分辨幾何特征的維吾爾文脫機(jī)簽名識(shí)別[J];計(jì)算機(jī)工程與應(yīng)用;2013年16期
9 王洪革;宋曉雪;潘石;;基于信息熵的靜態(tài)手寫(xiě)漢字簽名鑒定研究[J];計(jì)算機(jī)應(yīng)用與軟件;2013年01期
10 楊丹鳳;呂岳;;方向特征和網(wǎng)格特征融合的離線簽名鑒別[J];中國(guó)圖象圖形學(xué)報(bào);2012年06期
相關(guān)博士學(xué)位論文 前2條
1 許亞美;手寫(xiě)維吾爾文字識(shí)別若干關(guān)鍵技術(shù)研究[D];西安電子科技大學(xué);2014年
2 文靜;脫機(jī)簽名識(shí)別中的關(guān)鍵問(wèn)題研究[D];重慶大學(xué);2009年
相關(guān)碩士學(xué)位論文 前9條
1 楊曉萌;面向農(nóng)信社的票據(jù)簽名鑒別系統(tǒng)研究[D];西北大學(xué);2014年
2 謝文修;基于多級(jí)DTW匹配的聯(lián)機(jī)手寫(xiě)簽名鑒別研究[D];南昌大學(xué);2013年
3 張立;離線灰度手寫(xiě)簽名鑒別[D];武漢科技大學(xué);2012年
4 楊丹鳳;基于方向特征的離線簽名鑒別[D];華東師范大學(xué);2012年
5 胡麗娜;低質(zhì)量文檔圖像的二值化研究[D];南京理工大學(xué);2012年
6 龍建武;基于Otsu的圖像閾值分割算法的研究[D];吉林大學(xué);2011年
7 焦松林;離線中文簽名鑒定系統(tǒng)的關(guān)鍵技術(shù)研究[D];長(zhǎng)春工業(yè)大學(xué);2011年
8 宋艷霞;基于Bayes決策理論的脫機(jī)手寫(xiě)簽名識(shí)別研究[D];天津師范大學(xué);2010年
9 尤慶成;基于HMM-SVM混合模型的在線手寫(xiě)簽名認(rèn)證[D];中國(guó)科學(xué)技術(shù)大學(xué);2010年
,本文編號(hào):2293173
本文鏈接:http://www.lk138.cn/shoufeilunwen/xixikjs/2293173.html