城軌列車模型的關(guān)鍵參數(shù)擬合研究
[Abstract]:In recent years, the development of urban rail transit has led the rapid development of urban rail train design and manufacture, signal equipment research and production and other related industries. More and more universities and research institutions are engaged in the basic research and application research in the field of rail transit. As the basis of the research, the train dynamics model has a great influence on the train operation control. In the course of energy saving optimization research of urban rail trains, due to the inaccuracy of train model, the effect of theoretical energy saving in simulation environment is different from that of field measurement. Therefore, the accurate train model has profound significance for engineering and theoretical research. On the basis of summarizing the existing research on the train model and according to the operating conditions and data characteristics of the train, this paper establishes a single mass point dynamic model which accords with the actual train operation, and divides the train model into the idling stage model. Traction stage model and braking stage model. The traction stage is divided into traction establishment and traction resection, in which the traction establishment stage model is divided into low speed traction establishment stage model and high speed traction establishment stage model. The train model can be divided into several models, which can more accurately describe the actual train operation process. To solve the problem of parameter fitting, this paper presents an improved algorithm, CIP-FOA (Fruit Fly Optimization Algorithm with Changing Iteration and Population), for the optimization algorithm of Drosophila melanogaster. The algorithm improves the step size in terms of iteration and population by changing the radius of step size. By comparing with other algorithms, it is proved that CIP-FOA has obvious advantages over other algorithms in terms of stability, accuracy and efficiency. On the basis of analyzing the night test data of Beijing Metro Yizhuang Line, this paper applies CIP-FOA to the basic resistance parameters of trains, the low speed traction establishment stage, the high speed traction establishment stage. A total of 14 model parameters were fitted and calculated in the traction resection stage. Based on the established dynamic model of urban rail train and the proposed CIP-FOA, this paper develops a simulation software for the dynamic model of urban rail train, which is used for parameter fitting calculation and simulation verification of the model. Based on the simulation software of urban rail train dynamics model, the train operation data with different control strategies are simulated and calculated. Through the comparison and analysis of the simulation results, it is verified that the model accords with the actual running process of the train. Good experimental results show the function of this study in engineering planning and performance prediction of train dynamics model.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U270.11;TP391.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 衷路生;李兵;龔錦紅;張永賢;祝振敏;;高速列車非線性模型的極大似然辨識(shí)[J];自動(dòng)化學(xué)報(bào);2014年12期
2 郭紅戈;謝克明;;動(dòng)車組列車制動(dòng)系統(tǒng)的Hammerstein模型及其參數(shù)辨識(shí)方法[J];鐵道學(xué)報(bào);2014年04期
3 吳小文;李擎;;果蠅算法和5種群智能算法的尋優(yōu)性能研究[J];火力與指揮控制;2013年04期
4 康熊;曾宇清;張波;;高速列車空氣阻力測(cè)量分析方法[J];中國(guó)鐵道科學(xué);2012年05期
5 于振宇;陳德旺;;城軌列車制動(dòng)模型及參數(shù)辨識(shí)[J];鐵道學(xué)報(bào);2011年10期
6 郜春海;陳德旺;;基于模型選擇和優(yōu)化技術(shù)的自動(dòng)駕駛制動(dòng)模型辨識(shí)研究[J];鐵道學(xué)報(bào);2011年10期
7 楊輝;張坤鵬;王昕;衷路生;;高速列車多模型廣義預(yù)測(cè)控制方法[J];鐵道學(xué)報(bào);2011年08期
8 李成楠;;一種遺傳算法的改進(jìn)及其應(yīng)用[J];微計(jì)算機(jī)信息;2009年27期
9 田紅旗;;風(fēng)環(huán)境下的列車空氣阻力特性研究[J];中國(guó)鐵道科學(xué);2008年05期
10 趙金帥;魯瑞華;;一種用于防止早熟收斂的改進(jìn)遺傳算法[J];西南大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年01期
相關(guān)碩士學(xué)位論文 前3條
1 范禮乾;基于蟻群算法的列車推薦速度曲線優(yōu)化[D];北京交通大學(xué);2016年
2 李兵;高速動(dòng)車組的模型辨識(shí)與狀態(tài)估計(jì)[D];華東交通大學(xué);2015年
3 吳亮;牽引計(jì)算在高速鐵路閉塞分區(qū)設(shè)計(jì)中的應(yīng)用研究[D];西南交通大學(xué);2008年
,本文編號(hào):2267933
本文鏈接:http://www.lk138.cn/shoufeilunwen/xixikjs/2267933.html