国产伦乱,一曲二曲欧美日韩,AV在线不卡免费在线不卡免费,搞91AV视频

當(dāng)前位置:主頁 > 碩博論文 > 信息類碩士論文 >

基于支持向量機的非線性工業(yè)過程故障檢測與預(yù)測研究

發(fā)布時間:2018-09-08 21:10
【摘要】:隨著全球工業(yè)智造的大行其道,人們對工業(yè)生產(chǎn)系統(tǒng)的穩(wěn)定性、工業(yè)生產(chǎn)運行過程的經(jīng)濟性及產(chǎn)品質(zhì)量等各個方面的要求愈加嚴(yán)格。工業(yè)自動化市場規(guī)模的急劇擴張使得現(xiàn)代工業(yè)系統(tǒng)和設(shè)備愈加復(fù)雜,要保證大型復(fù)雜工業(yè)系統(tǒng)正常運行,需要面臨諸多挑戰(zhàn)。因此,為實現(xiàn)對工業(yè)過程實時有效地監(jiān)控與檢測,確保生產(chǎn)過程的安全可靠,利用支持向量機方法對對非線性工業(yè)過程的大數(shù)據(jù)進行故障檢測與預(yù)測具有重要的理論價值和實際意義。本文分析了支持向量機的基礎(chǔ)理論,推導(dǎo)了該算法的建模原理和過程。針對非線性工業(yè)過程中大數(shù)據(jù)的故障檢測和預(yù)測,首先采用交叉驗證優(yōu)化方法對支持向量機進行核參數(shù)優(yōu)化。然后分別利用支持向量機、主成分分析法和增強偏最小二乘法對連續(xù)攪拌釜式加熱器過程進行故障檢測,并對各個算法的故障檢測結(jié)果進行分析比對,實驗結(jié)果表明,SVM分類器在實際復(fù)雜工業(yè)過程中具有優(yōu)異的預(yù)測能力和理想的運行時間。針對非線性工業(yè)過程的故障預(yù)測問題,通過學(xué)習(xí)半監(jiān)督學(xué)習(xí)方法,利用孿生支持向量機和改進算法(S~4VM)對工業(yè)過程的故障狀態(tài)進行有效地預(yù)測分析。S~4VM對初始參數(shù)設(shè)定值不敏感,能同時考慮多個候選大邊界低密度分界線,并在最壞情況下優(yōu)化標(biāo)簽分配,在解決非線性工業(yè)過程大數(shù)據(jù)的故障預(yù)測的問題上表現(xiàn)優(yōu)異。
[Abstract]:With the popularity of global industrial intelligence, the requirements for the stability of industrial production system, the economy of industrial production process and the quality of products are becoming more and more stringent. The rapid expansion of industrial automation market makes modern industrial systems and equipment more complex. To ensure the normal operation of large-scale complex industrial systems, many challenges need to be faced. Therefore, in order to realize the real-time and effective monitoring and detection of the industrial process and ensure the safety and reliability of the production process, The support vector machine (SVM) method is of great theoretical value and practical significance for the fault detection and prediction of big data in nonlinear industrial processes. In this paper, the basic theory of support vector machine is analyzed, and the modeling principle and process of the algorithm are deduced. Aiming at the fault detection and prediction of big data in nonlinear industrial process, the kernel parameters of support vector machine are optimized by cross-validation optimization method. Then, support vector machine, principal component analysis and enhanced partial least square method are used to detect the faults of the continuous stirred tank heater, and the results of each algorithm are analyzed and compared. The experimental results show that the SVM classifier has excellent prediction ability and ideal running time in complex industrial processes. In order to solve the problem of nonlinear industrial process fault prediction, by learning semi-supervised learning method, twinning support vector machine and improved algorithm (S~4VM) are used to effectively predict the fault state of industrial process and analyze that Sch _ 4VM is insensitive to the initial parameter setting value. It can simultaneously consider multiple candidate large boundary low density boundaries and optimize label assignment in the worst case. It is excellent in solving the problem of big data's fault prediction in nonlinear industrial processes.
【學(xué)位授予單位】:渤海大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP277

【參考文獻】

相關(guān)期刊論文 前7條

1 王麗;侍洪波;;采用改進核偏最小二乘法的非線性化工過程故障檢測(英文)[J];Chinese Journal of Chemical Engineering;2014年06期

2 Naik A;;On the Application of PCA Technique to Fault Diagnosis[J];Tsinghua Science and Technology;2010年02期

3 劉萬里;劉三陽;王金艷;;不平衡支持向量機的調(diào)整方法[J];計算機科學(xué);2009年03期

4 賈銀山,賈傳熒;一種加權(quán)支持向量機分類算法[J];計算機工程;2005年12期

5 馬笑瀟,黃席樾,柴毅;基于SVM的二叉樹多類分類算法及其在故障診斷中的應(yīng)用[J];控制與決策;2003年03期

6 胡壽松,王源;基于支持向量機的非線性系統(tǒng)故障診斷[J];控制與決策;2001年05期

7 張學(xué)工;關(guān)于統(tǒng)計學(xué)習(xí)理論與支持向量機[J];自動化學(xué)報;2000年01期

相關(guān)碩士學(xué)位論文 前2條

1 祝向平;針對關(guān)鍵性能指標(biāo)的故障診斷方法研究[D];渤海大學(xué);2016年

2 張彥周;基于支持向量機的測井曲線預(yù)測儲層參數(shù)方法[D];西安科技大學(xué);2006年

,

本文編號:2231705

資料下載
論文發(fā)表

本文鏈接:http://lk138.cn/shoufeilunwen/xixikjs/2231705.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶fb1f2***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
欧美黄片在线一区| 欧美精品一区二区三区蜜臀| 欧美经典一区二区在线| 亚洲中文人人看| 人妻制服欧美日韩另类| 一起草久久| ww久3女久小久久Z久m| 国产在线后入人妻| 日本无码A一区二区三区| 午夜免费黄色影院| av一区中文字幕在线观看| 91人人摸人人干| 操逼嗯啊嗯啊哦嗯啊视频| 天天干天天爽天射| 国产精欧美一区二区| 三级在线播放国产专区| 国产乱码精品视频| 高潮久久高清| 色在线中文字幕凹凸| 人妻精品在线免费观看视频| 99人妻人人| 国产综合悠悠色色色| 午夜欧美激情视频在线| 日韩人妻少妇内射内射在线看| 中文字幕√日本| 色噜噜天堂二区| 黄色小h视频三级在线播放| 婷婷性情五月天综合| 国产经典av| 国产精美日韩| 亚洲中文自拍偷拍| 另类图片 亚洲二区| 啪视频免费看| 一本道淫妇一区二区三区| 色综合久久发布| 182福利精品| 日韩欧AV色色色| 大香蕉片在线| 抽插中文字幕亚洲| 欧美日韩在线网| 人人射人人插天天爽|