国产伦乱,一曲二曲欧美日韩,AV在线不卡免费在线不卡免费,搞91AV视频

當(dāng)前位置:主頁 > 碩博論文 > 信息類碩士論文 >

復(fù)雜自然環(huán)境下車牌識別算法研究

發(fā)布時(shí)間:2018-09-06 14:24
【摘要】:車牌識別技術(shù)是智能交通系統(tǒng)中的重要組成部分,是計(jì)算機(jī)視覺、圖像處理與模式識別在智能交通領(lǐng)域的重要研究課題之一。但在實(shí)際環(huán)境下采集到的車牌圖像,容易受到光照變化、尺度變化、目標(biāo)干擾等諸多不利因素影響,因此在復(fù)雜多變的自然下識別車牌仍然是一個(gè)十分具有挑戰(zhàn)的課題。車牌識別技術(shù)主要解決車牌的定位、分割、識別三個(gè)問題。本文分別對這三個(gè)部分進(jìn)行了研究,并提出了相應(yīng)算法。本文提出了一種基于目標(biāo)區(qū)域的車牌定位算法,采用逐步求精的定位策略。該算法適用于光照變化、尺度變化和目標(biāo)干擾等復(fù)雜的自然環(huán)境。本文引入了Selective Search算法對輸入圖像進(jìn)行目標(biāo)區(qū)域提取,根據(jù)車牌特征篩選出車牌候選區(qū)域,并通過一個(gè)預(yù)訓(xùn)練的支持向量機(jī)對候選區(qū)域進(jìn)行判別,保留車牌區(qū)域。對獲得車牌區(qū)域進(jìn)行非極大值(NMS)抑制剔除重合區(qū)域。最后精確定位到車牌位置。本文提出了一種基于連通區(qū)域的字符分割算法。該算法首先對輸入車牌進(jìn)行預(yù)處理和傾斜校正,結(jié)合連通區(qū)域標(biāo)記法和數(shù)學(xué)形態(tài)學(xué)處理法獲得字符區(qū)域。同時(shí),本文對傳統(tǒng)的字符歸一化方法進(jìn)行了改進(jìn),有效的解決了由字符歸一化造成的字符形變的問題。本文提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)的車牌字符識別算法,設(shè)計(jì)了兩個(gè)卷積網(wǎng)絡(luò)NET1和NET2,其中NET1用做識別漢字,NET2用做識別字母和數(shù)字。本文引入了 rectifier作為神經(jīng)元的激活函數(shù),并使用mini-batch隨機(jī)梯度下降法訓(xùn)練網(wǎng)絡(luò),可以加速目標(biāo)函數(shù)的收斂。采用卷積神經(jīng)網(wǎng)絡(luò)可以從輸入的字符圖像中自動(dòng)提取出圖像特征,并進(jìn)行分類,從而獲得識別結(jié)果。在整個(gè)過程中,不需要手動(dòng)選定圖像特征或?qū)D像作局部處理。實(shí)驗(yàn)表明,本文算法可以有效的在復(fù)雜自然環(huán)境中定位車牌,分割字符和識別字符。并將本文算法與同類型算法做了比較,均有顯著的提升。
[Abstract]:License plate recognition technology is an important part of intelligent transportation system. It is one of the important research topics of computer vision, image processing and pattern recognition in the field of intelligent transportation. However, the license plate images collected in the actual environment are easily affected by many unfavorable factors, such as light change, scale change, target interference and so on, so it is still a challenge to recognize the license plate in the complex and changeable nature. License plate recognition technology mainly solves three problems of license plate location, segmentation and recognition. In this paper, the three parts are studied, and the corresponding algorithms are proposed. A license plate location algorithm based on target region is proposed in this paper. The algorithm is suitable for complex natural environment, such as illumination variation, scale change and target interference. In this paper, the Selective Search algorithm is introduced to extract the target region of the input image, and the candidate region is selected according to the license plate feature, and the candidate region is identified by a pre-trained support vector machine to preserve the license plate area. Non-maximum (NMS) suppression is used to eliminate the coincidence area of the obtained license plate. Finally, the location of the license plate is accurately located. In this paper, a character segmentation algorithm based on connected region is proposed. The algorithm firstly preprocesses and corrects the input license plate, and combines the connected region marking method and the mathematical morphology processing method to obtain the character region. At the same time, the traditional method of character normalization is improved, which effectively solves the problem of character deformation caused by character normalization. A license plate character recognition algorithm based on convolution neural network is presented in this paper. Two convolution networks NET1 and NET2, are designed in which NET1 is used to recognize Chinese characters and NET2 is used to recognize letters and numbers. In this paper, rectifier is introduced as the activation function of neurons, and the mini-batch stochastic gradient descent method is used to train the network, which can accelerate the convergence of the objective function. By using convolution neural network, the image features can be automatically extracted from the input character images and classified, and the recognition results can be obtained. In the whole process, there is no need to manually select image features or make partial image processing. Experimental results show that the proposed algorithm can effectively locate license plates, segment characters and recognize characters in complex environments. This algorithm is compared with the same type algorithm, and has a significant improvement.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 耿慶田;趙宏偉;;基于分形維數(shù)和隱馬爾科夫特征的車牌識別[J];光學(xué)精密工程;2013年12期

2 咼潤華;蘇婷婷;馬曉偉;;BP神經(jīng)網(wǎng)絡(luò)聯(lián)合模板匹配的車牌識別系統(tǒng)[J];清華大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年09期

3 王偉;馬永強(qiáng);彭強(qiáng);;SVM多類分類器在車牌字符識別中的應(yīng)用[J];計(jì)算機(jī)工程與設(shè)計(jì);2011年09期

4 綦宏志;孫長城;安興偉;許敏鵬;馬嵐;明東;萬柏坤;;基于SVM特征優(yōu)化的Farwell虛擬矩陣字符識別[J];天津大學(xué)學(xué)報(bào);2011年09期

5 尚趙偉;國慶;馬尚君;袁博;楊建偉;;基于二進(jìn)小波變換的多車牌定位算法[J];計(jì)算機(jī)工程;2011年03期

6 陳振學(xué);常發(fā)亮;劉成云;;基于特征顯著性的多特征融合車牌定位算法[J];控制與決策;2010年12期

7 顧弘;趙光宙;齊冬蓮;孫峗;張建良;;車牌識別中先驗(yàn)知識的嵌入及字符分割方法[J];中國圖象圖形學(xué)報(bào);2010年05期

8 張坤艷;鐘宜亞;苗松池;王桂娟;;一種基于全局閾值二值化方法的BP神經(jīng)網(wǎng)絡(luò)車牌字符識別系統(tǒng)[J];計(jì)算機(jī)工程與科學(xué);2010年02期

9 閆雪梅;王曉華;夏興高;;基于PCA和BP神經(jīng)網(wǎng)絡(luò)算法的車牌字符識別[J];激光與紅外;2007年05期

10 周開軍;陳三寶;徐江陵;;復(fù)雜背景下的車牌定位和字符分割研究[J];計(jì)算機(jī)工程;2007年04期

相關(guān)碩士學(xué)位論文 前1條

1 王慧;基于模板匹配的手寫體字符識別算法研究[D];北京交通大學(xué);2012年

,

本文編號:2226627

資料下載
論文發(fā)表

本文鏈接:http://lk138.cn/shoufeilunwen/xixikjs/2226627.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bc368***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
一区二区三区后入| 精品偷拍一二视频| 欧美精品久久久久久久多人混战| 国产精品XV77| 狠狠动漫一区二区三区| 人妻无码不卡免费视频| 亚洲国产久久精品一区| 欧美日韩国产成人porn| 大香蕉视频在线观看直播| 中文字幕一页性中| 99欧美乱码精品一区二区三区| 欧美午夜操屄| 人人天天 久久| 野外少妇久久久| 一区hd二三区| 加勒比AV一区二区三区四在| 欧美 日韩 亚洲 成人精品 国产| 大鸡巴插入样子在线| 开心五月自拍五月| 欧美在线一区二区三区在线看| 在线综合一区二区| 天天爽天天射天天干| 久久你懂| 中文字幕一区2区3区一区二区三区 | 久久久久久无码精品亚洲日韩麻豆| 69成人网| 成人曰韩免费电影| 夜夜嗨国产免费| 欧韩日一区二区| 日本免费一区二区三区视频| 亚洲欧美一区二区三区精品久久| 綜合AV在綫| 日韩三级av伦理电影网站| 日韩欧美 中文字幕 视频一区| 91高清无码在线观看网站视频| 爆猛欧美精品三级二级一级| 91免费视频国产| 好屌妞这里有几万部免费的在线视频| 久久久少妇骚逼久久久久久久久| 性爱一区二区久久| XXXX久久久|