国产伦乱,一曲二曲欧美日韩,AV在线不卡免费在线不卡免费,搞91AV视频

當(dāng)前位置:主頁(yè) > 碩博論文 > 信息類碩士論文 >

基于文本傾向性分析的民航事件輿情趨勢(shì)預(yù)測(cè)方法研究

發(fā)布時(shí)間:2018-03-14 06:21

  本文選題:網(wǎng)絡(luò)輿情 切入點(diǎn):垃圾評(píng)論識(shí)別 出處:《中國(guó)民航大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


【摘要】:隨著我國(guó)民航業(yè)的高速發(fā)展,大眾對(duì)民航行業(yè)的關(guān)注度越來越高。微博、論壇等新媒體使民航輿情事件被高度關(guān)注。網(wǎng)民會(huì)借助這些平臺(tái)發(fā)表自己關(guān)于民航事件的評(píng)論,但網(wǎng)民產(chǎn)生的評(píng)論中存在與話題無關(guān),甚至是虛假的垃圾評(píng)論,所以在對(duì)民航事件分析前,首先需處理垃圾評(píng)論。此外,當(dāng)前網(wǎng)民評(píng)論的情感傾向會(huì)對(duì)未來網(wǎng)民對(duì)同一事件的態(tài)度產(chǎn)生影響,因此準(zhǔn)確客觀的對(duì)評(píng)論進(jìn)行情感分析并對(duì)發(fā)展趨勢(shì)做出預(yù)測(cè),對(duì)評(píng)估民航事件輿情的發(fā)展趨勢(shì)并提前進(jìn)行應(yīng)對(duì),是非常重要的。針對(duì)垃圾評(píng)論的識(shí)別和過濾,本文界定了評(píng)論是否重復(fù)出現(xiàn)、評(píng)論中政府部門出現(xiàn)次數(shù)等六個(gè)指標(biāo)作為識(shí)別垃圾評(píng)論的特征。采用信息增益算法對(duì)特征進(jìn)行權(quán)重計(jì)算,并利用粒子群優(yōu)化的支持向量機(jī)模型(PSO-SVM)進(jìn)行垃圾評(píng)論的識(shí)別和過濾。因獲取預(yù)測(cè)指標(biāo)是網(wǎng)絡(luò)輿情情感趨勢(shì)預(yù)測(cè)的前提,本文提出了不同于以往的單純熱度指標(biāo)(例如,關(guān)注度、評(píng)論回復(fù)數(shù)、轉(zhuǎn)發(fā)數(shù)等)的評(píng)論情感傾向性值時(shí)間序列的預(yù)測(cè)指標(biāo)。又因情感傾向性值呈現(xiàn)非線性、隨機(jī)性的特征,本文采用相關(guān)向量機(jī)模型進(jìn)行趨勢(shì)預(yù)測(cè)來提高精度。本文設(shè)計(jì)了實(shí)驗(yàn),對(duì)文中研究成果做了分析和驗(yàn)證。針對(duì)識(shí)別和過濾垃圾評(píng)論的問題,實(shí)驗(yàn)分析了界定垃圾評(píng)論的特征數(shù)量和不同特征對(duì)垃圾評(píng)論識(shí)別的影響,實(shí)驗(yàn)結(jié)果說明了選擇合適的特征對(duì)于垃圾評(píng)論識(shí)別的重要性。對(duì)于情感趨勢(shì)預(yù)測(cè),本文將相關(guān)向量機(jī)模型、Elman神經(jīng)網(wǎng)絡(luò)及BP神經(jīng)網(wǎng)絡(luò)模型各自的預(yù)測(cè)結(jié)果進(jìn)行了對(duì)比實(shí)驗(yàn)。利用平均絕對(duì)誤差(MAE)和均方根誤差(RMSE)評(píng)價(jià)預(yù)測(cè)的準(zhǔn)確性。通過對(duì)比實(shí)驗(yàn)說明,相關(guān)向量機(jī)的預(yù)測(cè)性能優(yōu)于其他兩種模型并能更為準(zhǔn)確的反映網(wǎng)民對(duì)輿情事件的情感趨勢(shì)。故本文對(duì)民航輿情分析中的垃圾評(píng)論識(shí)別和情感趨勢(shì)預(yù)測(cè)的研究是有意義的。
[Abstract]:With the rapid development of the civil aviation industry in China, the public is paying more and more attention to the civil aviation industry. New media such as Weibo, forum and other new media have made civil aviation public opinion events highly concerned. Netizens will use these platforms to make their own comments on civil aviation affairs. However, there are comments generated by Internet users that have nothing to do with the topic, or even false spam comments. Therefore, before analyzing the civil aviation incident, we should first deal with the garbage comments. In addition, The emotional tendency of current netizens' comments will have an impact on the attitude of future netizens to the same event, so accurately and objectively carry out the emotional analysis of the comments and make a prediction of the development trend. It is very important to assess the development trend of public opinion on civil aviation incidents and to deal with it in advance. In view of the identification and filtering of garbage comments, this paper defines whether the comments are repeated. Six indexes, such as the number of government departments appearing in the comments, are used to identify the spam comments. The information gain algorithm is used to calculate the weight of the features. The support vector machine model based on particle swarm optimization (PSO) is used to identify and filter garbage comments. Since obtaining prediction index is the premise of prediction of sentiment trend of network public opinion, this paper proposes a simple heat index (for example, concern degree), which is different from previous ones. The prediction index of the time series of the emotional tendency value of the comment, the response number of comment, the number of retweets, etc., and because of the nonlinear and random characteristics of the emotional tendency value, In this paper, the correlation vector machine model is used to predict the trend to improve the accuracy. Experiments are designed, and the research results are analyzed and verified. The experimental results show the importance of choosing suitable features for garbage comment recognition, and the prediction of emotion trend. In this paper, the correlation vector machine model Elman neural network and the BP neural network model are compared. The accuracy of the prediction is evaluated by using the mean absolute error (mae) and the root mean square error (RMSE). The prediction performance of correlation vector machine is better than the other two models and can more accurately reflect the emotional trend of Internet users' public opinion events. So this paper is meaningful to the garbage comment identification and emotional trend prediction in civil aviation public opinion analysis.
【學(xué)位授予單位】:中國(guó)民航大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李猛;劉元寧;;一種基于信息增益的新垃圾郵件特征選擇算法[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2017年02期

2 張代磊;黃大年;張沖;;基于遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)在密度界面反演中的應(yīng)用[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2017年02期

3 昝紅英;畢銀龍;石金銘;;基于Adaboost算法與規(guī)則匹配的垃圾評(píng)論識(shí)別[J];鄭州大學(xué)學(xué)報(bào)(理學(xué)版);2017年01期

4 陳婷;王雪怡;曲霏;陳福集;;基于時(shí)序主題的網(wǎng)絡(luò)輿情熱點(diǎn)話題演化分析方法[J];華中師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年05期

5 王振武;孫佳駿;尹成峰;;改進(jìn)粒子群算法優(yōu)化的支持向量機(jī)及其應(yīng)用[J];哈爾濱工程大學(xué)學(xué)報(bào);2016年12期

6 何炎祥;劉健博;孫松濤;;基于神經(jīng)網(wǎng)絡(luò)的微博輿情預(yù)測(cè)方法[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年09期

7 董松月;陳潤(rùn)雨;劉西菩;趙穎莉;馬曉寧;;網(wǎng)絡(luò)民航事件虛假評(píng)論的識(shí)別研究[J];智能計(jì)算機(jī)與應(yīng)用;2016年04期

8 游丹丹;陳福集;;基于改進(jìn)粒子群和BP神經(jīng)網(wǎng)絡(luò)的網(wǎng)絡(luò)輿情預(yù)測(cè)研究[J];情報(bào)雜志;2016年08期

9 梁f,

本文編號(hào):1610019


資料下載
論文發(fā)表

本文鏈接:http://lk138.cn/shoufeilunwen/xixikjs/1610019.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶9b718***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
麻豆精品自拍系列的网址大全| 国产久久久久久亚洲影视夜夜嗨| 中文一区不卡| 日本午夜网址| 三级片国外久久| 国产在线无码一区在线观看| 迷奸国产久久一区二区| 亚洲五月天激情综合在线| 在线观看免费夫妻3P视频| 欧美日韩不卡1区2区在线| 清纯唯美激情亚洲免费视频| 欧美亚洲加勒比不卡| 久久久久男人天堂| 亚洲欧美中文一区| 综合国产一区二区三区| 日本肏屄无码大鸡巴片| http久久视频| 国产精品视频16p| 久久香蕉色1| 美女黄屏免费视频在线观看| 免费观看黄片欧美频| 欧美精品久久久大尺度| 欧美区6页| 日本亚洲久久网站| 欧美 亚洲 日本| 国产无码一区二区三区综合| 草少妇久久久久久久久久| 91麻豆国产福利精品精华液| 欧美乱码在线观看| 又大又粗又长毛片| 五月婷婷网在线| 自拍偷拍无码高清韩国三级| 国产无遮挡免费视频在线老司| 国产毛片久久久久久久久春天| 成人毛片区| 日B免费免费观看视频| 爱综合| 福利女主播在线视频| 88AV国产精品| 自拍另类国产| 黄色涩色色涩人妻|