基于視覺定位的六軸工業(yè)機(jī)器人搬運(yùn)系統(tǒng)設(shè)計(jì)與研究
本文選題:搬運(yùn)機(jī)器人 切入點(diǎn):相機(jī)標(biāo)定 出處:《合肥工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:搬運(yùn)機(jī)器人在工業(yè)生產(chǎn)中應(yīng)用廣泛,然而傳統(tǒng)的示教方法無(wú)法應(yīng)對(duì)需要搬運(yùn)的物體位姿不定的情況,因此引入視覺技術(shù)對(duì)目標(biāo)物體進(jìn)行識(shí)別和定位,引導(dǎo)搬運(yùn)機(jī)器人完成搬運(yùn)任務(wù)。以空調(diào)壓縮機(jī)搬運(yùn)上線為目標(biāo)任務(wù),研究先后涉及機(jī)器人運(yùn)動(dòng)學(xué)、相機(jī)標(biāo)定與手眼標(biāo)定、圖像處理與目標(biāo)識(shí)別等方面,最后根據(jù)壓縮機(jī)自動(dòng)搬運(yùn)上線的任務(wù)要求完成基于視覺定位的機(jī)器人搬運(yùn)系統(tǒng)的設(shè)計(jì)應(yīng)用。在機(jī)器人運(yùn)動(dòng)學(xué)研究中,以RS50N型六軸工業(yè)機(jī)器人為研究對(duì)象,分析了該型機(jī)器人的結(jié)構(gòu)及基本參數(shù),建立了連桿坐標(biāo)系,列出相應(yīng)D-H參數(shù),之后根據(jù)D-H參數(shù)進(jìn)行了機(jī)器人運(yùn)動(dòng)學(xué)正逆解的求解,為機(jī)器人手眼標(biāo)定和搬運(yùn)系統(tǒng)正確定位目標(biāo)提供技術(shù)支持。在相機(jī)標(biāo)定研究中,分析了相機(jī)基本數(shù)學(xué)模型,基于張正友法和MATLAB攝像機(jī)標(biāo)定工具箱進(jìn)行了相機(jī)標(biāo)定實(shí)驗(yàn),求取了相機(jī)內(nèi)參數(shù)和相應(yīng)的外參數(shù);在手眼標(biāo)定研究中,對(duì)Eye-in-Hand視覺系統(tǒng)進(jìn)行了手眼標(biāo)定研究,推導(dǎo)了手眼標(biāo)定基本關(guān)系式AX=XB,選取基于矩陣直積的方法進(jìn)行標(biāo)定矩陣的求解,為減少噪聲影響,進(jìn)一步研究通過(guò)整體最小二乘法實(shí)現(xiàn)手眼標(biāo)定關(guān)系矩陣的精確求解,最后通過(guò)實(shí)驗(yàn)完成了Eye-in-Hand視覺系統(tǒng)的手眼標(biāo)定。在圖像處理與目標(biāo)識(shí)別研究中,以MATLAB圖像處理工具箱為平臺(tái),以拍攝的一幅圖像為處理對(duì)象,分析研究了圖像預(yù)處理、邊緣檢測(cè)方法;并針對(duì)圖像中的圓形目標(biāo)物體的識(shí)別,提出基于圓Hough變換和最小二乘法相結(jié)合的圓形目標(biāo)檢測(cè)定位方法,實(shí)驗(yàn)表明該方法識(shí)別效率和定位精度均較高。最后根據(jù)以上研究成果和壓縮機(jī)自動(dòng)搬運(yùn)上線的任務(wù)要求,構(gòu)建了基于機(jī)器視覺和RS50N六軸工業(yè)機(jī)器人的壓縮機(jī)自動(dòng)搬運(yùn)系統(tǒng)。其中,設(shè)計(jì)并優(yōu)化了機(jī)器人末端夾爪機(jī)構(gòu)。經(jīng)實(shí)驗(yàn)驗(yàn)證該系統(tǒng)能夠出色完成工作任務(wù)。
[Abstract]:The robot is widely used in industrial production, but the traditional display can not cope with the need to pose object handling uncertain situation teaching method, so the introduction of visual technology to identify and locate the target object, guided robot handling tasks. By air conditioning compressor on-line handling task as the goal, research has involved the robot kinematics, camera calibration with the hand eye calibration, image processing and target recognition. Finally, based on the compressor automatic handling on-line tasks required to complete the design and application of robot handling system based on visual positioning. In the kinematics of the robot, with RS50N type six axis industrial robot as the research object, analyzes the structure of the robot and basic parameters, establish linkage coordinate system, lists the corresponding D-H parameters, according to the D-H parameters of the robot kinematics inverse solution, for the robot Hand eye calibration and provide technical support for handling system the correct positioning of target. In the research of camera calibration, analysis of the basic mathematical model of the camera, the camera calibration experiment of Zhang's method and MATLAB camera calibration toolbox based on calculated camera parameters and the corresponding parameters; in the study of hand eye calibration, vision system of Eye-in-Hand calibration of hand eye derived hand eye calibration basic formula AX=XB, were selected for the calibration matrix method based on matrix direct product, to reduce noise effects, further research through the overall least squares implementation of hand eye calibration accurate solution matrix, finally completed the Eye-in-Hand calibration of vision system in image processing and hand eye. Study on recognition, using MATLAB image processing toolbox for the platform, in an image taken as treatment object, research the image Preprocessing, edge detection and recognition methods; for a circular object in the image of the proposed circular target detection and localization method of circular Hough transform and least square method based on the combination of experiments show that the method recognition efficiency and positioning accuracy are high. According to the above research results and the compressor on-line automatic handling tasks, automatic construction handling compressor machine vision and RS50N six axis industrial robot system based on the design and optimization of the robot gripper mechanism. The experimental results show that the proposed system can complete work tasks.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41;TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 翟敬梅;董鵬飛;張鐵;;基于視覺引導(dǎo)的工業(yè)機(jī)器人定位抓取系統(tǒng)設(shè)計(jì)[J];機(jī)械設(shè)計(jì)與研究;2014年05期
2 馬文羅;胡建新;錢東海;;基于視覺的運(yùn)動(dòng)目標(biāo)伺服跟蹤研究[J];計(jì)算機(jī)工程;2012年08期
3 徐方;鄒風(fēng)山;鄭春暉;;新松機(jī)器人產(chǎn)業(yè)發(fā)展及應(yīng)用[J];機(jī)器人技術(shù)與應(yīng)用;2011年05期
4 莊開嵐;王吉忠;周潔;;機(jī)器視覺技術(shù)在角度檢測(cè)方面的應(yīng)用研究[J];裝備制造技術(shù);2011年04期
5 方海燕;劉小勇;;機(jī)器人運(yùn)動(dòng)學(xué)模型中的參數(shù)選取[J];機(jī)械設(shè)計(jì);2011年02期
6 李云峰;李長(zhǎng)峰;曲東升;;基于機(jī)器視覺技術(shù)的全自動(dòng)微點(diǎn)焊機(jī)器人的研究[J];機(jī)器人技術(shù)與應(yīng)用;2010年05期
7 潘麗霞;;論工業(yè)機(jī)器人的發(fā)展與應(yīng)用[J];山西科技;2010年03期
8 范新南;朱佳媛;;基于小波變換的快速圖像匹配算法與實(shí)現(xiàn)[J];計(jì)算機(jī)工程與設(shè)計(jì);2009年20期
9 李愛國(guó);胡英;馬孜;;標(biāo)定方程AX=ZB的兩種新解法[J];系統(tǒng)仿真學(xué)報(bào);2008年14期
10 楊延西,劉丁,辛菁;模糊遺傳圖像相關(guān)匹配算法[J];儀器儀表學(xué)報(bào);2005年11期
,本文編號(hào):1605629
本文鏈接:http://www.lk138.cn/shoufeilunwen/xixikjs/1605629.html